沉淀再出发:使用python进行机器学习

沉淀再出发:使用python进行机器学习

一、前言

  使用python进行学习运算和机器学习是非常方便的,因为其中有很多的库函数可以使用,同样的python自身语言的特点也非常利于程序的编写和使用。

二、几个简单的例子

  2.1、使用python实现KNN算法

 1 #########################################
 2 # kNN: k Nearest Neighbors
 3  
 4 # Input:      newInput: vector to compare to existing dataset (1xN)
 5 #             dataSet:  size m data set of known vectors (NxM)
 6 #             labels:     data set labels (1xM vector)
 7 #             k:         number of neighbors to use for comparison 
 8             
 9 # Output:     the most popular class label
10 #########################################
11  
12 from numpy import *
13 import operator
14  
15 # create a dataset which contains 4 samples with 2 classes
16 def createDataSet():
17     # create a matrix: each row as a sample
18     group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]])
19     labels = ['A', 'A', 'B', 'B'] # four samples and two classes
20     return group, labels
21  
22 # classify using kNN
23 def kNNClassify(newInput, dataSet, labels, k):
24     numSamples = dataSet.shape[0] # shape[0] stands for the num of row
25  
26     ## step 1: calculate Euclidean distance
27     # tile(A, reps): Construct an array by repeating A reps times
28     # the following copy numSamples rows for dataSet
29     diff = tile(newInput, (numSamples, 1)) - dataSet # Subtract element-wise
30     squaredDiff = diff ** 2 # squared for the subtract
31     squaredDist = sum(squaredDiff, axis = 1) # sum is performed by row
32     distance = squaredDist ** 0.5
33  
34     ## step 2: sort the distance
35     # argsort() returns the indices that would sort an array in a ascending order
36     sortedDistIndices = argsort(distance)
37  
38     classCount = {} # define a dictionary (can be append element)
39     for i in range(k):
40         ## step 3: choose the min k distance
41         voteLabel = labels[sortedDistIndices[i]]
42  
43         ## step 4: count the times labels occur
44         # when the key voteLabel is not in dictionary classCount, get()
45         # will return 0
46         classCount[voteLabel] = classCount.get(voteLabel, 0) + 1
47  
48     ## step 5: the max voted class will return
49     maxCount = 0
50     for key, value in classCount.items():
51         if value > maxCount:
52             maxCount = value
53             maxIndex = key
54  
55     return maxIndex    

     测试文件:

 1 import knn
 2 from numpy import * 
 3  
 4 dataSet, labels = knn.createDataSet()
 5  
 6 testX = array([1.2, 1.0])
 7 k = 3
 8 k = 3
 9 outputLabel = knn.kNNClassify(testX, dataSet, labels, 3)
10 print ("Your input is:", testX, "and classified to class: ", outputLabel)
11  
12 testX = array([0.1, 0.3])
13 outputLabel = knn.kNNClassify(testX, dataSet, labels, 3)
14 print ("Your input is:", testX, "and classified to class: ", outputLabel)

      其中knn的思路非常简单,就是在某一个范围内观察距离该需要归类的样本的所有样本之中,那一个种类的样本数目最多,通过对附近的K个样本的寻找来进行分类。

   2.2、使用scikit-learn库进行机器学习

  1 #!usr/bin/env python
  2 # coding:utf-8 
  3  
  4 import sys
  5 import os
  6 import time
  7 from sklearn import metrics
  8 import numpy as np
  9 import pickle
 10 # import imp
 11 
 12 # imp.reload(sys)
 13 
 14  
 15 # Multinomial Naive Bayes Classifier
 16 def naive_bayes_classifier(train_x, train_y):
 17     from sklearn.naive_bayes import MultinomialNB
 18     model = MultinomialNB(alpha=0.01)
 19     model.fit(train_x, train_y)
 20     return model
 21  
 22  
 23 # KNN Classifier
 24 def knn_classifier(train_x, train_y):
 25     from sklearn.neighbors import KNeighborsClassifier
 26     model = KNeighborsClassifier()
 27     model.fit(train_x, train_y)
 28     return model
 29  
 30  
 31 # Logistic Regression Classifier
 32 def logistic_regression_classifier(train_x, train_y):
 33     from sklearn.linear_model import LogisticRegression
 34     model = LogisticRegression(penalty='l2')
 35     model.fit(train_x, train_y)
 36     return model
 37  
 38  
 39 # Random Forest Classifier
 40 def random_forest_classifier(train_x, train_y):
 41     from sklearn.ensemble import RandomForestClassifier
 42     model = RandomForestClassifier(n_estimators=8)
 43     model.fit(train_x, train_y)
 44     return model
 45  
 46  
 47 # Decision Tree Classifier
 48 def decision_tree_classifier(train_x, train_y):
 49     from sklearn import tree
 50     model = tree.DecisionTreeClassifier()
 51     model.fit(train_x, train_y)
 52     return model
 53  
 54  
 55 # GBDT(Gradient Boosting Decision Tree) Classifier
 56 def gradient_boosting_classifier(train_x, train_y):
 57     from sklearn.ensemble import GradientBoostingClassifier
 58     model = GradientBoostingClassifier(n_estimators=200)
 59     model.fit(train_x, train_y)
 60     return model
 61  
 62  
 63 # SVM Classifier
 64 def svm_classifier(train_x, train_y):
 65     from sklearn.svm import SVC
 66     model = SVC(kernel='rbf', probability=True)
 67     model.fit(train_x, train_y)
 68     return model
 69  
 70 # SVM Classifier using cross validation
 71 def svm_cross_validation(train_x, train_y):
 72     from sklearn.grid_search import GridSearchCV
 73     from sklearn.svm import SVC
 74     model = SVC(kernel='rbf', probability=True)
 75     param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
 76     grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
 77     grid_search.fit(train_x, train_y)
 78     best_parameters = grid_search.best_estimator_.get_params()
 79     for para, val in best_parameters.items():
 80         print (para, val)
 81     model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
 82     model.fit(train_x, train_y)
 83     return model
 84  
 85 def read_data(data_file):
 86     import gzip
 87     f = gzip.open(data_file, "rb")
 88     train, val, test = pickle.load(f,encoding='bytes')
 89     f.close()
 90     train_x = train[0]
 91     train_y = train[1]
 92     test_x = test[0]
 93     test_y = test[1]
 94     return train_x, train_y, test_x, test_y
 95     
 96 if __name__ == '__main__':
 97     data_file = "mnist.pkl.gz"
 98     thresh = 0.5
 99     model_save_file = None
100     model_save = {}
101     
102     test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'GBDT']
103     classifiers = {'NB':naive_bayes_classifier, 
104                   'KNN':knn_classifier,
105                    'LR':logistic_regression_classifier,
106                    'RF':random_forest_classifier,
107                    'DT':decision_tree_classifier,
108                   'SVM':svm_classifier,
109                 'SVMCV':svm_cross_validation,
110                  'GBDT':gradient_boosting_classifier
111     }
112     
113     print ('reading training and testing data...')
114     train_x, train_y, test_x, test_y = read_data(data_file)
115     num_train, num_feat = train_x.shape
116     num_test, num_feat = test_x.shape
117     is_binary_class = (len(np.unique(train_y)) == 2)
118     print ('******************** Data Info *********************')
119     print ('#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat))
120     
121     for classifier in test_classifiers:
122         print ('******************* %s ********************' % classifier)
123         start_time = time.time()
124         model = classifiers[classifier](train_x, train_y)
125         print ('training took %fs!' % (time.time() - start_time))
126         predict = model.predict(test_x)
127         if model_save_file != None:
128             model_save[classifier] = model
129         if is_binary_class:
130             precision = metrics.precision_score(test_y, predict)
131             recall = metrics.recall_score(test_y, predict)
132             print ('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
133         accuracy = metrics.accuracy_score(test_y, predict)
134         print ('accuracy: %.2f%%' % (100 * accuracy) )
135  
136     if model_save_file != None:
137         pickle.dump(model_save, open(model_save_file, 'wb'))

    其中数据集使用的minst数据集

 

     2.3、sklearn的使用

 1     Supervised Learning
 2         Classification
 3         Regression
 4         Measuring performance
 5     Unsupervised Learning
 6         Clustering
 7         Dimensionality Reduction
 8         Density Estimation
 9     Evaluation of Learning Models
10     Choosing the right algorithm for your dataset
   2.3.1、分类任务(随机梯度下降(SGD)算法)
1 >>> import matplotlib.pyplot as plt
2 >>> plt.style.use('seaborn')
3 >>> from fig_code import plot_sgd_separator
4 >>> plot_sgd_separator()
5 >>> plt.show()

     其中sgd_separator.py

 1 import numpy as np
 2 import matplotlib.pyplot as plt
 3 from sklearn.linear_model import SGDClassifier
 4 from sklearn.datasets.samples_generator import make_blobs
 5 
 6 def plot_sgd_separator():
 7     # we create 50 separable points
 8     X, Y = make_blobs(n_samples=50, centers=2,
 9                       random_state=0, cluster_std=0.60)
10 
11     # fit the model
12     clf = SGDClassifier(loss="hinge", alpha=0.01,
13                         max_iter=200, fit_intercept=True)
14     clf.fit(X, Y)
15 
16     # plot the line, the points, and the nearest vectors to the plane
17     xx = np.linspace(-1, 5, 10)
18     yy = np.linspace(-1, 5, 10)
19 
20     X1, X2 = np.meshgrid(xx, yy)
21     Z = np.empty(X1.shape)
22     for (i, j), val in np.ndenumerate(X1):
23         x1 = val
24         x2 = X2[i, j]
25         p = clf.decision_function(np.array([x1, x2]).reshape(1, -1))
26         Z[i, j] = p[0]
27     levels = [-1.0, 0.0, 1.0]
28     linestyles = ['dashed', 'solid', 'dashed']
29     colors = 'k'
30 
31     ax = plt.axes()
32     ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
33     ax.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)
34 
35     ax.axis('tight')
36 
37 
38 if __name__ == '__main__':
39     plot_sgd_separator()
40     plt.show()

      2.3.2、线性回归任务

    @1、linear_regression.py:

 1 import numpy as np
 2 import matplotlib.pyplot as plt
 3 from sklearn.linear_model import LinearRegression
 4 
 5 
 6 def plot_linear_regression():
 7     a = 0.5
 8     b = 1.0
 9 
10     # x from 0 to 10
11     x = 30 * np.random.random(20)
12 
13     # y = a*x + b with noise
14     y = a * x + b + np.random.normal(size=x.shape)
15 
16     # create a linear regression classifier
17     clf = LinearRegression()
18     clf.fit(x[:, None], y)
19 
20     # predict y from the data
21     x_new = np.linspace(0, 30, 100)
22     y_new = clf.predict(x_new[:, None])
23 
24     # plot the results
25     ax = plt.axes()
26     ax.scatter(x, y)
27     ax.plot(x_new, y_new)
28 
29     ax.set_xlabel('x')
30     ax.set_ylabel('y')
31 
32     ax.axis('tight')
33 
34 
35 if __name__ == '__main__':
36     plot_linear_regression()
37     plt.show()

     导入上面的程序并使用:

1 >>> from fig_code import plot_linear_regression
2 >>> plot_linear_regression()
3 >>> plt.show()

      @2、接下来我们自己生成数据并进行拟合:

    生成模型:

1 >>> from sklearn.linear_model import LinearRegression
2 >>> model = LinearRegression(normalize=True)
3 >>> print(model.normalize)
4 True
5 >>> print(model)
6 LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=True)

    生成数据:

 1 >>> x = np.arange(10)
 2 >>> y = 2 * x + 1
 3 >>> print(x)
 4 [0 1 2 3 4 5 6 7 8 9]
 5 >>> print(y)
 6 [ 1  3  5  7  9 11 13 15 17 19]
 7 >>> plt.plot(x, y, 'o');
 8 [<matplotlib.lines.Line2D object at 0x0000020B141025F8>]
 9 >>> plt.show()
10 >>>

    进行拟合:

 1 >>> X = x[:, np.newaxis]
 2 >>> print(X)
 3 [[0]
 4  [1]
 5  [2]
 6  [3]
 7  [4]
 8  [5]
 9  [6]
10  [7]
11  [8]
12  [9]]
13 >>> print(y)
14 [ 1  3  5  7  9 11 13 15 17 19]
15 >>> model.fit(X, y)
16 LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=True)
17 >>> print(model.coef_)
18 [2.]
19 >>> print(model.intercept_)
20 0.9999999999999982
21 >>>

      可以看到斜率和截距确实是我们期望的。

    2.3.3、Iris Dataset的简单样例
 1 >>> from sklearn.datasets import load_iris
 2 >>> iris = load_iris()
 3 >>> iris.keys()
 4 dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])
 5 >>> n_samples, n_features = iris.data.shape
 6 >>> print((n_samples, n_features))
 7 (150, 4)
 8 >>> print(iris.data[0])
 9 [5.1 3.5 1.4 0.2]
10 >>> print(iris.data.shape)
11 (150, 4)
12 >>> print(iris.target.shape)
13 (150,)
14 >>> print(iris.target)
15 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
18  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
19  2 2]
20 >>> print(iris.target_names)
21 ['setosa' 'versicolor' 'virginica']
22 >>> import numpy as np
23 >>> import matplotlib.pyplot as plt
24 >>> x_index = 0
25 >>> y_index = 1
26 >>> formatter = plt.FuncFormatter(lambda i, *args: iris.target_names[int(i)])
27 >>> plt.scatter(iris.data[:, x_index], iris.data[:, y_index],
28 ...             c=iris.target, cmap=plt.cm.get_cmap('RdYlBu', 3))
29 <matplotlib.collections.PathCollection object at 0x0000020B0BDE89B0>
30 >>> plt.colorbar(ticks=[0, 1, 2], format=formatter)
31 <matplotlib.colorbar.Colorbar object at 0x0000020B0AFC8A58>
32 >>> plt.clim(-0.5, 2.5)
33 >>> plt.xlabel(iris.feature_names[x_index])
34 Text(0.5, 0, 'sepal length (cm)')
35 >>> plt.ylabel(iris.feature_names[y_index]);
36 Text(0, 0.5, 'sepal width (cm)')
37 >>> plt.show()
38 >>>

    2.3.4、knn分类器
 1 """
 2 Small helpers for code that is not shown in the notebooks
 3 """
 4 
 5 from sklearn import neighbors, datasets, linear_model
 6 import pylab as pl
 7 import numpy as np
 8 from matplotlib.colors import ListedColormap
 9 
10 # Create color maps for 3-class classification problem, as with iris
11 cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
12 cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
13 
14 def plot_iris_knn():
15     iris = datasets.load_iris()
16     X = iris.data[:, :2]  # we only take the first two features. We could
17                         # avoid this ugly slicing by using a two-dim dataset
18     y = iris.target
19 
20     knn = neighbors.KNeighborsClassifier(n_neighbors=3)
21     knn.fit(X, y)
22 
23     x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1
24     y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1
25     xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
26                          np.linspace(y_min, y_max, 100))
27     Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])
28 
29     # Put the result into a color plot
30     Z = Z.reshape(xx.shape)
31     pl.figure()
32     pl.pcolormesh(xx, yy, Z, cmap=cmap_light)
33 
34     # Plot also the training points
35     pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
36     pl.xlabel('sepal length (cm)')
37     pl.ylabel('sepal width (cm)')
38     pl.axis('tight')
39 
40 
41 def plot_polynomial_regression():
42     rng = np.random.RandomState(0)
43     x = 2*rng.rand(100) - 1
44 
45     f = lambda t: 1.2 * t**2 + .1 * t**3 - .4 * t **5 - .5 * t ** 9
46     y = f(x) + .4 * rng.normal(size=100)
47 
48     x_test = np.linspace(-1, 1, 100)
49 
50     pl.figure()
51     pl.scatter(x, y, s=4)
52 
53     X = np.array([x**i for i in range(5)]).T
54     X_test = np.array([x_test**i for i in range(5)]).T
55     regr = linear_model.LinearRegression()
56     regr.fit(X, y)
57     pl.plot(x_test, regr.predict(X_test), label='4th order')
58 
59     X = np.array([x**i for i in range(10)]).T
60     X_test = np.array([x_test**i for i in range(10)]).T
61     regr = linear_model.LinearRegression()
62     regr.fit(X, y)
63     pl.plot(x_test, regr.predict(X_test), label='9th order')
64 
65     pl.legend(loc='best')
66     pl.axis('tight')
67     pl.title('Fitting a 4th and a 9th order polynomial')
68 
69     pl.figure()
70     pl.scatter(x, y, s=4)
71     pl.plot(x_test, f(x_test), label="truth")
72     pl.axis('tight')
73     pl.title('Ground truth (9th order polynomial)')

    引用上面的包:

 1 >>> from sklearn import neighbors, datasets
 2 >>> iris = datasets.load_iris()
 3 >>> X, y = iris.data, iris.target
 4 >>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
 5 >>> knn.fit(X, y)
 6 KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
 7            metric_params=None, n_jobs=None, n_neighbors=5, p=2,
 8            weights='uniform')
 9 >>> result = knn.predict([[3, 5, 4, 2],])
10 >>> print(iris.target_names[result])
11 ['versicolor']
12 >>> knn.predict_proba([[3, 5, 4, 2],])
13 array([[0. , 0.8, 0.2]])
14 >>> from fig_code import plot_iris_knn
15 >>> plot_iris_knn()
16 >>> plt.show()
17 >>>

 

     2.3.5、Regression Example
1 >>> import numpy as np
2 >>> np.random.seed(0)
3 >>> X = np.random.random(size=(20, 1))
4 >>> y = 3 * X.squeeze() + 2 + np.random.randn(20)
5 >>> plt.plot(X.squeeze(), y, 'o');
6 [<matplotlib.lines.Line2D object at 0x0000020B0C045828>]
7 >>> plt.show()

 1 >>>
 2 >>> from sklearn.linear_model import LinearRegression
 3 >>> model = LinearRegression()
 4 >>> model.fit(X, y)
 5 LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
 6          normalize=False)
 7 >>> X_fit = np.linspace(0, 1, 100)[:, np.newaxis]
 8 >>> y_fit = model.predict(X_fit)
 9 >>> plt.plot(X.squeeze(), y, 'o')
10 [<matplotlib.lines.Line2D object at 0x0000029B6B6B7BE0>]
11 >>> plt.plot(X_fit.squeeze(), y_fit);
12 [<matplotlib.lines.Line2D object at 0x0000029B5BA68BA8>]
13 >>> plt.show()

       Scikit-learn also has some more sophisticated models, which can respond to finer features in the data::

 1 >>> from sklearn.ensemble import RandomForestRegressor
 2 >>> model = RandomForestRegressor()
 3 >>> model.fit(X, y)
 4 FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
 5   "10 in version 0.20 to 100 in 0.22.", FutureWarning)
 6 RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
 7            max_features='auto', max_leaf_nodes=None,
 8            min_impurity_decrease=0.0, min_impurity_split=None,
 9            min_samples_leaf=1, min_samples_split=2,
10            min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None,
11            oob_score=False, random_state=None, verbose=0, warm_start=False)
12 >>> X_fit = np.linspace(0, 1, 100)[:, np.newaxis]
13 >>> y_fit = model.predict(X_fit)
14 >>> plt.plot(X.squeeze(), y, 'o')
15 [<matplotlib.lines.Line2D object at 0x0000029B6BDEB198>]
16 >>> plt.plot(X_fit.squeeze(), y_fit);
17 [<matplotlib.lines.Line2D object at 0x0000029B5BA683C8>]
18 >>> plt.show()
19 >>>

   2.3.6、Dimensionality Reduction: PCA

 1 >>> from sklearn import datasets
 2 >>> iris = datasets.load_iris()
 3 >>> X, y = iris.data, iris.target
 4 >>> from sklearn.decomposition import PCA
 5 >>> pca = PCA(n_components=0.95)
 6 >>> pca.fit(X)
 7 PCA(copy=True, iterated_power='auto', n_components=0.95, random_state=None,
 8   svd_solver='auto', tol=0.0, whiten=False)
 9 >>> X_reduced = pca.transform(X)
10 >>> print("Reduced dataset shape:", X_reduced.shape)
11 Reduced dataset shape: (150, 2)
12 >>> import pylab as plt
13 >>> plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y,
14 ...            cmap='RdYlBu')
15 <matplotlib.collections.PathCollection object at 0x0000029B5C7E77F0>
16 >>> print("Meaning of the 2 components:")
17 Meaning of the 2 components:
18 >>> for component in pca.components_:
19 ...     print(" + ".join("%.3f x %s" % (value, name)
20 ...                      for value, name in zip(component,
21 ...                                             iris.feature_names)))
22 ...
23 0.361 x sepal length (cm) + -0.085 x sepal width (cm) + 0.857 x petal length (cm) + 0.358 x petal width (cm)
24 0.657 x sepal length (cm) + 0.730 x sepal width (cm) + -0.173 x petal length (cm) + -0.075 x petal width (cm)
25 >>> plt.show()
26 >>>

 

    2.3.7、Clustering: K-means
 1 >>> from sklearn.cluster import KMeans
 2 >>> k_means = KMeans(n_clusters=3, random_state=0) # Fixing the RNG in kmeans
 3 >>> k_means.fit(X)
 4 KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
 5     n_clusters=3, n_init=10, n_jobs=None, precompute_distances='auto',
 6     random_state=0, tol=0.0001, verbose=0)
 7 >>> y_pred = k_means.predict(X)
 8 >>> plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y_pred,
 9 ...            cmap='RdYlBu');
10 <matplotlib.collections.PathCollection object at 0x0000029B5C7456A0>
11 >>> plt.show()
12 >>>

   2.4、sklearn的模型验证    

    An important piece of machine learning is model validation: that is, determining how well your model will generalize from the training data 
to future unlabeled data. Let's look at an example using the nearest neighbor classifier. This is a very simple classifier:
it simply stores all training data, and for any unknown quantity, simply returns the label of the closest training point.With the iris data,
it very easily returns the correct prediction for each of the input points:

      样例如下:

 1 >>> from sklearn.neighbors import KNeighborsClassifier
 2 >>> X, y = iris.data, iris.target
 3 >>> clf = KNeighborsClassifier(n_neighbors=1)
 4 >>> clf.fit(X, y)
 5 KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
 6            metric_params=None, n_jobs=None, n_neighbors=1, p=2,
 7            weights='uniform')
 8 >>> y_pred = clf.predict(X)
 9 >>> print(np.all(y == y_pred))
10 True
11 >>>

    A more useful way to look at the results is to view the confusion matrix, or the matrix showing the frequency of inputs and outputs:

>>> from sklearn.metrics import confusion_matrix
>>> print(confusion_matrix(y, y_pred))
[[50  0  0]
 [ 0 50  0]
 [ 0  0 50]]

 

        For each class, all 50 training samples are correctly identified. But this does not mean that our model is perfect! In particular, such a model generalizes extremely poorly to new data. We can simulate this by splitting our data into a training set and a testing set. Scikit-learn contains some convenient routines to do this:

>>> from sklearn.model_selection import train_test_split
>>> Xtrain, Xtest, ytrain, ytest = train_test_split(X, y)
>>> clf.fit(Xtrain, ytrain)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=None, n_neighbors=1, p=2,
           weights='uniform')
>>> ypred = clf.predict(Xtest)
>>> print(confusion_matrix(ytest, ypred))
[[12  0  0]
 [ 0  6  0]
 [ 0  2 18]]

      This paints a better picture of the true performance of our classifier: apparently there is some confusion between the second and third species, which we might anticipate given what we've seen of the data above.This is why it's extremely important to use a train/test split when evaluating your models.

 

posted @ 2018-10-16 19:46  精心出精品  阅读(1478)  评论(0编辑  收藏  举报