LightOJ 1245: Harmonic Number (II) (数学)

http://lightoj.com/volume_showproblem.php?problem=1245

I was trying to solve problem '1234 - Harmonic Number', I wrote the following code

long long H( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
        res = res + n / i;
    return res;
}

Yes, my error was that I was using the integer divisions only. However, you are given n, you have to find H(n) as in my code.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n < 231).

Output

For each case, print the case number and H(n) calculated by the code.

Sample Input

Output for Sample Input

11

1

2

3

4

5

6

7

8

9

10

2147483647

Case 1: 1

Case 2: 3

Case 3: 5

Case 4: 8

Case 5: 10

Case 6: 14

Case 7: 16

Case 8: 20

Case 9: 23

Case 10: 27

Case 11: 46475828386

题意分析:

\frac{n}{1}+\frac{n}{2}+\frac{n}{3}+......+\frac{n}{n}

解题思路:

题目范围较大,直接求或者打表都会超时,

可以拿24这个数来看看, 三个数分别为n , i, n/i。

前两个数为24和12, 末尾有24-12个1,

同理末尾有12-8个2,

有8-6个3,

有6-4个4.

这样只要计算到\sqrt{n},再考虑一下重复的情况,就能算出答案。

#include <stdio.h>
#include <math.h>
int main()
{
	int t=0, T;
	long long n, i, sum, temp, m;
	scanf("%d", &T);
	while(T--)
	{
		scanf("%lld", &n);
		sum=0;
		temp=n;
		m=sqrt(n);
		for(i=1; i<=m; i++)
			sum+=n/i + (n/i - n/(i+1)) * i;
		i--;	
		if(n/i==m)
			sum-=m;
		printf("Case %d: %lld\n", ++t, sum);
	}
	return 0;
}

 

posted @ 2019-08-14 08:35  宿星  阅读(105)  评论(0编辑  收藏  举报