程序项目代做,有需求私信(vue、React、Java、爬虫、电路板设计、嵌入式linux等)

第十九节,使用RNN实现一个退位减法器

退位减法具有RNN的特性,即输入的两个数相减时,一旦发生退位运算,需要将中间状态保存起来,当高位的数传入时将退位标志一并传入参与计算。

我们在做减法运算时候,把减数和被减数转换为二进制然后进行运算。我们定义一个RNN网络,输入节点数为2个,依次传入减数和被减数的二进制序列值,隐藏层节点数为16个,由于二进制减法输出值为0或者1,所以输出节点数为可以设置为1个或者2个,如果设置为2个,表示看成一个二分类问题;如果设置为1个,就表示输出的值,这里我们设置输出节点数为1个,输出层使用的是S型函数。

一 定义基本函数

由于使用二进制运算,每一位的值只可能为0或者1,因此激活函数全部选择S型函数。

#规定随机数生成器的种子,可以每次得到一样的值
np.random.seed(0)
'''
一 定义基本函数
'''

def sigmoid(x):
    '''
    定义S型函数
    
    args:
        x:输入数或list、ndarray
    '''
    return 1/(1+np.exp(-x))
    
def sigmoid_output_to_derivative(output):
    '''
    定义sigmod的导数
    
    args:
        output:sigmoid函数的输出  假设要计算x=5时,sigmoid函数的导数,此处就传入sigmoid(5)
    '''
    return output*(1-output)

二 建立二进制映射关系

我们定义减法的最大限制在256以内,即8位数的减法,定义int与二进制之间的映射字典int2binary。

'''
二 建立二进制映射

定义的减法最大值限制在256以内,即8位二进制的减法,定义int与二进制之间的映射字典int2binary
'''
#整数到其二进制表示的映射字典
int2binary = {}
#二进制的位数
binary_dim = 8
#计算0-255的二进制表示
largest_number = pow(2,binary_dim)
'''
注意 np.array([range(largest_number)],dtype=np.uint8) 返回的是[[0,1,2,3...255]] 形状1x256 如果使用这个后面需要.T进行转置
np.array(range(largest_number),dtype=np.uint8) 返回的是[0,1,2,...255]形状为(256,) 尽量不使用这种形状不明确的
然后按行转为二进制 得到256x8
'''
binary = np.unpackbits(
        np.array(range(largest_number),dtype=np.uint8).reshape(256,1),axis=1)
#建立int-二进制映射
for i in range(largest_number):
    #向字典中追加数据
    int2binary[i] = binary[i]
    

三 定义参数

定义权重和偏置,这里我们为了简化运算,忽略偏置。

'''
三 定义参数

隐藏层的权重synapse_0(2x16),输出层的权重synapse_1(16x1),循环节点的权重synapse_h(16x16)
这里只设置权重 忽略偏置
'''

#参数设置
learning_rate = 0.9                 #学习速率
input_dim = 2                       #输入节点的个数为2,减数和被减数
hidden_dim = 16                     #隐藏层节点个数
output_dim = 1                      #输出节点个数

n_samples = 10000                   #样本个数 

#初始化网络  np.random.random生成一个[0,1)之间随机浮点数或size大小浮点数组
synapse_0 = (2*np.random.random((input_dim,hidden_dim))-1)*0.05   #-0.05~0.05之间
synapse_1 = (2*np.random.random((hidden_dim,output_dim))-1)*0.05  #-0.05~0.05之间
synapse_h = (2*np.random.random((hidden_dim,hidden_dim))-1)*0.05   #-0.05~0.05之间

#用于存放反向传播的权重梯度值
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)

四 准备样本数据

随机生成减数和被减数数据,并计算结果。这里要求被减数要大于减数。最后并把这些数转换为二进制。

'''
四 准备样本数据
'''


#建立循环生成样本数据,先生成两个数a,b,如果a小于b,就交换位置,保证被减数大
for i in range(n_samples):
    #生成一个数字a 被减数  范围[0,256)之间的整数
    a_int = np.random.randint(largest_number)   
    #生成一个数字b 减数,b的最大值取得是largest_number/2 
    b_int = np.random.randint(largest_number/2)   
    #如果生成的b>a交换
    if a_int < b_int:
        tmp = b_int
        b_int = a_int
        a_int = tmp
     
    #二进制编码
    a = int2binary[a_int]    #被减数
    b = int2binary[b_int]    #减数
    c = int2binary[a_int - b_int]  #差值

五 模型初始化

初始化神经网络的预测值为0,初始化总误差为0,定义layer_2_deltas存储反向传播过程中输出层的误差,layer_1_values存放隐藏层的输出值,由于第一个数据传入时,没有前面的隐藏层输出值来作为本次的输入,所以需要为其定义一个初始值,这里定义为0.1.

    '''
    五 模型初始化
    '''
    d = np.zeros_like(c)     #存储神经网络的预测值 初始化为0
    over_all_error = 0       #初始化总误差为0
    
    layer_2_deltas = list()  #存储每个时间点输出层的误差
    layer_1_values = list()  #存储每个时间点隐藏层的值
    
    layer_1_values.append(np.ones(hidden_dim)*0.1)  #一开始没有隐藏层(t=1),所以初始化原始值为0.1

六 正向传播

循环遍历每个二进制,从个位开始依次相减,并将中间隐藏层的输出传入下一位的计算(退位减法),把每一个时间点的误差导数都记录下来,同时统计总误差,为输出准备。

    '''
    六 正向传播
    '''
    #循环遍历每一个二进制位
    for position in range(binary_dim):
        #生成输入和输出 从右向左,每次取两个输入数字的一个bit位
        X = np.array([[a[binary_dim - position- 1],b[binary_dim - position - 1]]])
        #正确答案
        y = np.array([[c[binary_dim - position -1]]]).T
        
        #计算隐藏层输出 新的隐藏层 = 输入层 + 之前的隐藏层
        layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))        
        #将隐藏层保存下来,下个事件序列可以使用
        layer_1_values.append(copy.deepcopy(layer_1))
        
        #计算输出层
        layer_2 = sigmoid(np.dot(layer_1,synapse_1))
        
        #预测误差
        layer_2_error = layer_2 - y
        #把每个时间点的误差导数都记录下来
        layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
        
        #总误差
        over_all_error += np.abs(layer_2_error[0])
        
        #记录每个预测的bit位
        d[binary_dim - position - 1] = np.round(layer_2[0][0])
    
    fuature_layer_1_delta = np.zeros(hidden_dim)

最后一行代码是为了反向传播准备的初始化。同正向传播一样,反向传播是从最后一次往前反向计算误差,对于每一个当前的计算都需要有它的下一次结果参与。反向计算从最后一次开始的,它没有后一次的输入,这里初始化为0.

七 反向训练

初始化之后,开始从高位往回训练,一次对每一位的所有层计算误差,并根据每层误差对权重求梯度,得到其调整值,最终将每一位算出的各层权重的调整值加载一块乘以学习率,来更新各层的权重,完成一次优化训练。

    '''
    七 反向训练
    '''
    for position in range(binary_dim):
        X = np.array([[a[position],b[position]]])     #最后一次的两个输入
        layer_1 = layer_1_values[-position-1]         #当前时间点的隐藏层
        prev_layer_1 = layer_1_values[-position-2]    #前一个时间点的隐藏层
        
        layer_2_delta = layer_2_deltas[-position-1]   #当前时间点输出导数
        #通过后一个时间点的一隐藏层误差和当前时间点的输出层误差,计算当前时间点的隐藏层误差
        layer_1_delta = (fuature_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T))*sigmoid_output_to_derivative(layer_1)

        
        
        #等完成了所有反向传播误差计算,才会更新权重矩阵,先暂时把梯度矩阵存起来
        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
        synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
        synapse_0_update += X.T.dot(layer_1_delta)
        
        fuature_layer_1_delta = layer_1_delta
        
    #完成所有反向传播之后,更新权重矩阵,并把矩阵梯度变量清0
    synapse_0 -= synapse_0_update*learning_rate
    synapse_1 -= synapse_1_update*learning_rate
    synapse_h -= synapse_h_update*learning_rate
    synapse_0_update = 0
    synapse_1_update = 0
    synapse_h_update = 0

八 输出

    
    '''
    八 打印输出结果
    '''
    if i%800 == 0:
        print('总误差:',str(over_all_error))
        print('Pred:',str(d))
        print('True:',str(c))
        out = 0
        for index,x in enumerate(reversed(d)):
            out += x*pow(2,index)
        print(str(a_int) + '-' + str(b_int) + '=' + str(out))
        print('-------------------------------------------------')

可以看到随着迭代次数的增加,计算越来越准确。

完整代码:

# -*- coding: utf-8 -*-
"""
Created on Sun May  6 17:33:24 2018

@author: lenovo
"""

'''
裸写一个退位减法器
使用python编写简单循环神经网络拟合一个退位减法的操作,观察其反向传播过程
'''

import  numpy as np
import copy

#规定随机数生成器的种子,可以每次得到一样的值
np.random.seed(0)
'''
一 定义基本函数
'''

def sigmoid(x):
    '''
    定义S型函数
    
    args:
        x:输入数或list、ndarray
    '''
    return 1/(1+np.exp(-x))
    
def sigmoid_output_to_derivative(output):
    '''
    定义sigmod函数输出的导数
    
    args:
        output: output:sigmoid函数的输出  假设要计算x=5时,sigmoid函数的导数,此处就传入sigmoid(5)
    '''
    return output*(1-output)


'''
二 建立二进制映射

定义的减法最大值限制在256以内,即8位二进制的减法,定义int与二进制之间的映射字典int2binary
'''
#整数到其二进制表示的映射字典
int2binary = {}
#二进制的位数
binary_dim = 8
#计算0-255的二进制表示
largest_number = pow(2,binary_dim)
'''
注意 np.array([range(largest_number)],dtype=np.uint8) 返回的是[[0,1,2,3...255]] 形状1x256 如果使用这个后面需要.T进行转置
np.array(range(largest_number),dtype=np.uint8) 返回的是[0,1,2,...255]形状为(256,) 尽量不使用这种形状不明确的
然后按行转为二进制 得到256x8
'''
binary = np.unpackbits(
        np.array(range(largest_number),dtype=np.uint8).reshape(256,1),axis=1)
#建立int-二进制映射
for i in range(largest_number):
    #向字典中追加数据
    int2binary[i] = binary[i]
    
    
'''
三 定义参数

隐藏层的权重synapse_0(2x16),输出层的权重synapse_1(16x1),循环节点的权重synapse_h(16x16)
这里只设置权重 忽略偏置
'''

#参数设置
learning_rate = 0.9                 #学习速率
input_dim = 2                       #输入节点的个数为2,减数和被减数
hidden_dim = 16                     #隐藏层节点个数
output_dim = 1                      #输出节点个数

n_samples = 10000                   #样本个数 

#初始化网络  np.random.random生成一个[0,1)之间随机浮点数或size大小浮点数组
synapse_0 = (2*np.random.random((input_dim,hidden_dim))-1)*0.05   #-0.05~0.05之间
synapse_1 = (2*np.random.random((hidden_dim,output_dim))-1)*0.05  #-0.05~0.05之间
synapse_h = (2*np.random.random((hidden_dim,hidden_dim))-1)*0.05   #-0.05~0.05之间

#用于存放反向传播的权重梯度值
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)


'''
四 准备样本数据
'''


#建立循环生成样本数据,先生成两个数a,b,如果a小于b,就交换位置,保证被减数大
for i in range(n_samples):
    #生成一个数字a 被减数  范围[0,256)之间的整数
    a_int = np.random.randint(largest_number)   
    #生成一个数字b 减数,b的最大值取得是largest_number/2 
    b_int = np.random.randint(largest_number/2)   
    #如果生成的b>a交换
    if a_int < b_int:
        tmp = b_int
        b_int = a_int
        a_int = tmp
     
    #二进制编码
    a = int2binary[a_int]    #被减数
    b = int2binary[b_int]    #减数
    c = int2binary[a_int - b_int]  #差值
    
    '''
    五 模型初始化
    '''
    d = np.zeros_like(c)     #存储神经网络的预测值 初始化为0
    over_all_error = 0       #初始化总误差为0
    
    layer_2_deltas = list()  #存储每个时间点输出层的误差
    layer_1_values = list()  #存储每个时间点隐藏层的值
    
    layer_1_values.append(np.ones(hidden_dim)*0.1)  #一开始没有隐藏层(t=1),所以初始化原始值为0.1
    
    '''
    六 正向传播
    '''
    #循环遍历每一个二进制位
    for position in range(binary_dim):
        #生成输入和输出 从右向左,每次取两个输入数字的一个bit位
        X = np.array([[a[binary_dim - position- 1],b[binary_dim - position - 1]]])
        #正确答案
        y = np.array([[c[binary_dim - position -1]]]).T
        
        #计算隐藏层输出 新的隐藏层 = 输入层 + 之前的隐藏层
        layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))        
        #将隐藏层保存下来,下个事件序列可以使用
        layer_1_values.append(copy.deepcopy(layer_1))
        
        #计算输出层
        layer_2 = sigmoid(np.dot(layer_1,synapse_1))
        
        #预测误差
        layer_2_error = layer_2 - y
        #把每个时间点的误差导数都记录下来
        layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
        
        #总误差
        over_all_error += np.abs(layer_2_error[0])
        
        #记录每个预测的bit位
        d[binary_dim - position - 1] = np.round(layer_2[0][0])
    
    fuature_layer_1_delta = np.zeros(hidden_dim)
    
    
    '''
    七 反向训练
    '''
    for position in range(binary_dim):
        X = np.array([[a[position],b[position]]])     #最后一次的两个输入
        layer_1 = layer_1_values[-position-1]         #当前时间点的隐藏层
        prev_layer_1 = layer_1_values[-position-2]    #前一个时间点的隐藏层
        
        layer_2_delta = layer_2_deltas[-position-1]   #当前时间点输出导数
        #通过后一个时间点的一隐藏层误差和当前时间点的输出层误差,计算当前时间点的隐藏层误差
        layer_1_delta = (fuature_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T))*sigmoid_output_to_derivative(layer_1)

        
        
        #等完成了所有反向传播误差计算,才会更新权重矩阵,先暂时把梯度矩阵存起来
        synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
        synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
        synapse_0_update += X.T.dot(layer_1_delta)
        
        fuature_layer_1_delta = layer_1_delta
        
    #完成所有反向传播之后,更新权重矩阵,并把矩阵梯度变量清0
    synapse_0 -= synapse_0_update*learning_rate
    synapse_1 -= synapse_1_update*learning_rate
    synapse_h -= synapse_h_update*learning_rate
    synapse_0_update = 0
    synapse_1_update = 0
    synapse_h_update = 0
    
    
    '''
    八 打印输出结果
    '''
    if i%800 == 0:
        print('总误差:',str(over_all_error))
        print('Pred:',str(d))
        print('True:',str(c))
        out = 0
        for index,x in enumerate(reversed(d)):
            out += x*pow(2,index)
        print(str(a_int) + '-' + str(b_int) + '=' + str(out))
        print('-------------------------------------------------')
        
        
    










    
View Code

 参考文献

[1]循环神经网络(RNN)模型与前向反向传播算法

[2]深度学习——循环神经网络RNN(一)_反向传播算法

posted @ 2018-05-07 20:16  大奥特曼打小怪兽  阅读(1475)  评论(0编辑  收藏  举报
如果有任何技术小问题,欢迎大家交流沟通,共同进步