第十七节,深度学习模型的训练技巧-优化卷积核,多通道卷积
在使用卷积神经网络时,我们也总结了一些训练技巧,下面就来介绍如何对卷积核进行优化,以及多通道卷积技术的使用。
一 优化卷积核
在实际的卷积训练中,为了加快速度,常常把卷积核裁开。比如一个3x3的卷积核,可以裁成一个3x1和1x3的卷积核(通过矩阵乘法得知),分别对原有输入做卷积运算,这样可以大大提升运算的速度。
原理:在浮点运算中乘法消耗的资源比较多,我们目的就是尽量减少乘法运算。
- 比如对一个5x2的原始图片进行一次3x3的SAME卷积,相当于生成的5x2的像素中,每一个像素都需要经历3x3次乘法,那么一共是90次。
- 同样是这样图片,如果先进行一次3X1的SAME卷积,相当于生成的5x2的像素中,每一个像素都需要经历3x1次乘法,那么一共是30次。再进行一次1x3的SAME卷积也是计算30次,在一起总共60次。
这仅仅是一个很小的数据张量,而且随着张量维度的增大,层数的增多,减少的运算更多。运算量减少了,运算速度会更快。
接下来我会演示一个例子,仍然是改写第十三节对cifar10数据集分类的例子。
# -*- coding: utf-8 -*- """ Created on Thu May 3 12:29:16 2018 @author: zy """ ''' 优化卷积核 提高运算速度 ''' ''' 建立一个带有全局平均池化层的卷积神经网络 并对CIFAR-10数据集进行分类 1.使用3个卷积层的同卷积操作,滤波器大小为5x5,每个卷积层后面都会跟一个步长为2x2的池化层,滤波器大小为2x2 2.对输出的10个feature map进行全局平均池化,得到10个特征 3.对得到的10个特征进行softmax计算,得到分类 ''' import cifar10_input import tensorflow as tf import numpy as np def weight_variable(shape): ''' 初始化权重 args: shape:权重shape ''' initial = tf.truncated_normal(shape=shape,mean=0.0,stddev=0.1) return tf.Variable(initial) def bias_variable(shape): ''' 初始化偏置 args: shape:偏置shape ''' initial =tf.constant(0.1,shape=shape) return tf.Variable(initial) def conv2d(x,W): ''' 卷积运算 ,使用SAME填充方式 卷积层后 out_height = in_hight / strides_height(向上取整) out_width = in_width / strides_width(向上取整) args: x:输入图像 形状为[batch,in_height,in_width,in_channels] W:权重 形状为[filter_height,filter_width,in_channels,out_channels] ''' return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') def max_pool_2x2(x): ''' 最大池化层,滤波器大小为2x2,'SAME'填充方式 池化层后 out_height = in_hight / strides_height(向上取整) out_width = in_width / strides_width(向上取整) args: x:输入图像 形状为[batch,in_height,in_width,in_channels] ''' return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') def avg_pool_6x6(x): ''' 全局平均池化层,使用一个与原有输入同样尺寸的filter进行池化,'SAME'填充方式 池化层后 out_height = in_hight / strides_height(向上取整) out_width = in_width / strides_width(向上取整) args; x:输入图像 形状为[batch,in_height,in_width,in_channels] ''' return tf.nn.avg_pool(x,ksize=[1,6,6,1],strides=[1,6,6,1],padding='SAME') def print_op_shape(t): ''' 输出一个操作op节点的形状 args: t:必须是一个tensor类型 t.get_shape()返回一个元组 .as_list()转换为list ''' print(t.op.name,'',t.get_shape().as_list()) ''' 一 引入数据集 ''' batch_size = 128 learning_rate = 1e-4 training_step = 15000 display_step = 200 #数据集目录 data_dir = './cifar10_data/cifar-10-batches-bin' print('begin') #获取训练集数据 images_train,labels_train = cifar10_input.inputs(eval_data=False,data_dir = data_dir,batch_size=batch_size) print('begin data') ''' 二 定义网络结构 ''' #定义占位符 input_x = tf.placeholder(dtype=tf.float32,shape=[None,24,24,3]) #图像大小24x24x input_y = tf.placeholder(dtype=tf.float32,shape=[None,10]) #0-9类别 x_image = tf.reshape(input_x,[batch_size,24,24,3]) #1.卷积层 ->池化层 W_conv1 = weight_variable([5,5,3,64]) b_conv1 = bias_variable([64]) h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1) #输出为[-1,24,24,64] print_op_shape(h_conv1) h_pool1 = max_pool_2x2(h_conv1) #输出为[-1,12,12,64] print_op_shape(h_pool1) #2.卷积层 ->池化层 卷积核做优化 W_conv21 = weight_variable([5,1,64,64]) b_conv21 = bias_variable([64]) h_conv21 = tf.nn.relu(conv2d(h_pool1,W_conv21) + b_conv21) #输出为[-1,12,12,64] print_op_shape(h_conv21) W_conv2 = weight_variable([1,5,64,64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_conv21,W_conv2) + b_conv2) #输出为[-1,12,12,64] print_op_shape(h_conv2) h_pool2 = max_pool_2x2(h_conv2) #输出为[-1,6,6,64] print_op_shape(h_pool2) #3.卷积层 ->全局平均池化层 W_conv3 = weight_variable([5,5,64,10]) b_conv3 = bias_variable([10]) h_conv3 = tf.nn.relu(conv2d(h_pool2,W_conv3) + b_conv3) #输出为[-1,6,6,10] print_op_shape(h_conv3) nt_hpool3 = avg_pool_6x6(h_conv3) #输出为[-1,1,1,10] print_op_shape(nt_hpool3) nt_hpool3_flat = tf.reshape(nt_hpool3,[-1,10]) y_conv = tf.nn.softmax(nt_hpool3_flat) ''' 三 定义求解器 ''' #softmax交叉熵代价函数 cost = tf.reduce_mean(-tf.reduce_sum(input_y * tf.log(y_conv),axis=1)) #求解器 train = tf.train.AdamOptimizer(learning_rate).minimize(cost) #返回一个准确度的数据 correct_prediction = tf.equal(tf.arg_max(y_conv,1),tf.arg_max(input_y,1)) #准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,dtype=tf.float32)) ''' 四 开始训练 ''' sess = tf.Session(); sess.run(tf.global_variables_initializer()) # 启动计算图中所有的队列线程 调用tf.train.start_queue_runners来将文件名填充到队列,否则read操作会被阻塞到文件名队列中有值为止。 tf.train.start_queue_runners(sess=sess) for step in range(training_step): #获取batch_size大小数据集 image_batch,label_batch = sess.run([images_train,labels_train]) #one hot编码 label_b = np.eye(10,dtype=np.float32)[label_batch] #开始训练 train.run(feed_dict={input_x:image_batch,input_y:label_b},session=sess) if step % display_step == 0: train_accuracy = accuracy.eval(feed_dict={input_x:image_batch,input_y:label_b},session=sess) print('Step {0} tranining accuracy {1}'.format(step,train_accuracy))
运行结果如下:
二 多通道卷积技术
多通道卷积技术详细内容可以点击:第十四节,卷积神经网络之经典网络Inception(四)
多通道卷积可以理解为一种新的CNN网络模型,在原有的卷积模型基础上扩展。
亲爱的读者和支持者们,自动博客加入了打赏功能,陆陆续续收到了各位老铁的打赏。在此,我想由衷地感谢每一位对我们博客的支持和打赏。你们的慷慨与支持,是我们前行的动力与源泉。
日期 | 姓名 | 金额 |
---|---|---|
2023-09-06 | *源 | 19 |
2023-09-11 | *朝科 | 88 |
2023-09-21 | *号 | 5 |
2023-09-16 | *真 | 60 |
2023-10-26 | *通 | 9.9 |
2023-11-04 | *慎 | 0.66 |
2023-11-24 | *恩 | 0.01 |
2023-12-30 | I*B | 1 |
2024-01-28 | *兴 | 20 |
2024-02-01 | QYing | 20 |
2024-02-11 | *督 | 6 |
2024-02-18 | 一*x | 1 |
2024-02-20 | c*l | 18.88 |
2024-01-01 | *I | 5 |
2024-04-08 | *程 | 150 |
2024-04-18 | *超 | 20 |
2024-04-26 | .*V | 30 |
2024-05-08 | D*W | 5 |
2024-05-29 | *辉 | 20 |
2024-05-30 | *雄 | 10 |
2024-06-08 | *: | 10 |
2024-06-23 | 小狮子 | 666 |
2024-06-28 | *s | 6.66 |
2024-06-29 | *炼 | 1 |
2024-06-30 | *! | 1 |
2024-07-08 | *方 | 20 |
2024-07-18 | A*1 | 6.66 |
2024-07-31 | *北 | 12 |
2024-08-13 | *基 | 1 |
2024-08-23 | n*s | 2 |
2024-09-02 | *源 | 50 |
2024-09-04 | *J | 2 |
2024-09-06 | *强 | 8.8 |
2024-09-09 | *波 | 1 |
2024-09-10 | *口 | 1 |
2024-09-10 | *波 | 1 |
2024-09-12 | *波 | 10 |
2024-09-18 | *明 | 1.68 |
2024-09-26 | B*h | 10 |
2024-09-30 | 岁 | 10 |
2024-10-02 | M*i | 1 |
2024-10-14 | *朋 | 10 |
2024-10-22 | *海 | 10 |
2024-10-23 | *南 | 10 |
2024-10-26 | *节 | 6.66 |
2024-10-27 | *o | 5 |
2024-10-28 | W*F | 6.66 |
2024-10-29 | R*n | 6.66 |
2024-11-02 | *球 | 6 |
2024-11-021 | *鑫 | 6.66 |
2024-11-25 | *沙 | 5 |
2024-11-29 | C*n | 2.88 |

分类:
tensorflow
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了