Rockchip RK3399 - Codec驱动( Realtek ALC5651)
----------------------------------------------------------------------------------------------------------------------------
开发板 :NanoPC-T4开发板
eMMC :16GB
LPDDR3 :4GB
显示屏 :15.6英寸HDMI接口显示屏
u-boot :2023.04
linux :6.3
----------------------------------------------------------------------------------------------------------------------------
在Rockchip RK3399 - ASoC Codec驱动基础中我们介绍了codec驱动涉及到的数据结构以及核心API。并且已经了解到每个codec driver必须提供以下功能:
- codec dai和pcm的配置信息:通过struct snd_soc_dai_driver描述,包括dai的能力描述和操作接口;
- codec的控制接口:其控制接口一般是I2C或SPI。控制接口用于读写codec的寄存器。在struct snd_soc_component_driver结构体中,有大量字段描述codec的控制接口,比如read、write等;
- Mixer和其它音频控件;
- codec的音频操作:通过结构体struct snd_soc_dai_ops描述;
- DAPM描述信息;
- DAPM事件处理程序;
本节我们将会以rt5651驱动为例进行分析,驱动源码位于sound/soc/codecs/rt5651.c文件。
一、设备树配置
1.1 设备节点rt5651
我们在arch/arm64/boot/dts/rockchip/rk3399-evb.dts文件添加rt5651设备节点,该节点位于i2c1节点下:
&i2c1 { status = "okay"; i2c-scl-rising-time-ns = <300>; i2c-scl-falling-time-ns = <15>; rt5651: rt5651@1a { #sound-dai-cells = <0>; compatible = "rockchip,rt5651"; reg = <0x1a>; clocks = <&cru SCLK_I2S_8CH_OUT>; clock-names = "mclk"; status = "okay"; }; };
其中:
- status :指定设备状态为“正常”,表示该设备状态为正常运行;
- i2c-scl-rising-time-ns:定义了SCL信号上升时间的最小值,单位是纳秒;
- i2c-scl-falling-time-ns:定义了SCL信号下降时间的最小值,单位是纳秒;
接着定义I2C从设备节点rt5651,即音频编解码器的设备节点,其名称为 rt5651,I2C从设备7位地址为0x1a;
- compatible:指定设备驱动程序的兼容性,即告诉内核该设备可以被哪些驱动程序所使用;
- reg:指定了rt5651设备在I2C控制器上的设备地址;
- clock-names:指定时钟名称,"mclk"表示MCLK时钟;
- clocks:mclk时钟来自SCLK_I2S_8CH_OUT;
- status :指定设备状态为“正常”,表示该设备状态为正常运行;
关于rt5651设备节点更多属性可以参考文档:Documentation/devicetree/bindings/sound/rt5651.txt。
i2c1设备节点定义在arch/arm64/boot/dts/rockchip/rk3399.dtsi,内容如下:
i2c1: i2c@ff110000 { compatible = "rockchip,rk3399-i2c"; reg = <0x0 0xff110000 0x0 0x1000>; assigned-clocks = <&cru SCLK_I2C1>; assigned-clock-rates = <200000000>; clocks = <&cru SCLK_I2C1>, <&cru PCLK_I2C1>; clock-names = "i2c", "pclk"; interrupts = <GIC_SPI 59 IRQ_TYPE_LEVEL_HIGH 0>; pinctrl-names = "default"; pinctrl-0 = <&i2c1_xfer>; #address-cells = <1>; #size-cells = <0>; status = "disabled"; };
1.2 时钟频率
这里我们看看一下时钟频率配置:
clocks = <&cru SCLK_I2S_8CH_OUT>; clock-names = "mclk";
1.2.1 clk_i2sout
SCLK_I2S_8CH_OUT为平台为时钟分配的特定的id,定义在drivers/clk/rockchip/clk-rk3399.c:
COMPOSITE_NODIV(SCLK_I2S_8CH_OUT, "clk_i2sout", mux_i2sout_p, CLK_SET_RATE_PARENT, RK3399_CLKSEL_CON(31), 2, 1, MFLAGS, RK3399_CLKGATE_CON(8), 12, GFLAGS)
这是composite类型的时钟,其中COMPOSITE_NODIV宏定义在drivers/clk/rockchip/clk.h:
#define COMPOSITE_NODIV(_id, cname, pnames, f, mo, ms, mw, mf, \ go, gs, gf) \ { \ .id = _id, \ .branch_type = branch_composite, \ .name = cname, \ .parent_names = pnames, \ .num_parents = ARRAY_SIZE(pnames), \ .flags = f, \ .muxdiv_offset = mo, \ .mux_shift = ms, \ .mux_width = mw, \ .mux_flags = mf, \ .gate_offset = go, \ .gate_shift = gs, \ .gate_flags = gf, \ }
(1) 在RK3399 datasheet中,我们可以找到名字为clk_i2sout的时钟的信息,从下图可以看到它有两个父时钟,一个ID为62,可以在datasheet表中找到62代表的是clk_i2sout_src;另一个ID为64,可以在datasheet表中找到64代表的是clk_12m;
实际上mux_i2sout_p中存放的就是这两个父时钟的名称;
PNAME(mux_i2sout_p) = { "clk_i2sout_src", "xin12m" };
我们可以找到时钟clk_i2sout_src的定义,它是一个多路选择类型的时钟,如下所示;
MUX(0, "clk_i2sout_src", mux_i2sch_p, CLK_SET_RATE_PARENT, RK3399_CLKSEL_CON(31), 0, 2, MFLAGS),
而xin12m应该是一个fixed rate clock(有源晶振、无源晶振)。
(2) 宏RK3399_CLKGATE_CON定义在drivers/clk/rockchip/clk.h:
#define RK3399_CLKGATE_CON(x) ((x) * 0x4 + 0x300)
通过RK3399_CLKGATE_CON(8)可以得到寄存器偏移地址8*0x04+0x300=0x320,偏移0x320是CRU_CLKGATE_CON8寄存器。
接着我们看一下CRU_CLKGATE_CON8寄存器,CRU_CLKGATE_CON8为Internal clock gating register8,其中位[12]含义如下:
可以看到位12为clk_i2sout时钟使能位,低电平使能,高电平禁用。 那clk_i2sout到底是什么时钟呢?
RK3399平台有三路I2S(其中一路内部使用,可以不管),但是MCLK只有一个,也就是说I2S0、I2S1只有一路能占用,因此我猜测clk_i2sout应该就是MCLK信号线的时钟。
(3) 宏RK3399_CLKSEL_CON定义在drivers/clk/rockchip/clk.h:
#define RK3399_CLKSEL_CON(x) ((x) * 0x4 + 0x100)
通过RK3399_CLKSEL_CON(31)可以得到寄存器偏移地址31*0x04+0x100=0x17C,偏移0x17C是CRU_CLKSEL_CON31寄存器。
接着我们看一下CRU_CLKSEL_CON31寄存器,CRU_CLKSEL_CON31为Internal clock select and divide register31,其中位[2]含义如下:
可以看到位2用于clk_i2sout时钟源选择,这里需要配置为clk_i2s。
1.2.2 时钟链路
经过上面的分析,我们不难推断出clk_i2sout的时钟链路如下所示:
其中clk_i2sout_src的时钟源由clk_i2s0、clk_i2s1、clk_i2s2,其定义在mux_i2sch_p:
PNAME(mux_i2sch_p) = { "clk_i2s0", "clk_i2s1","clk_i2s2" };
由CRU_CLKSEL_CON31寄存器的位[1:0]控制时钟源的选择:
关于时钟源clk_i2s0以及之前的时钟链路我们在Rockchip RK3399 - Platform驱动(DMA&i2s0)中介绍。
二、I2C控制器驱动
RK3399这款SOC的I2C结构,其内部有9个I2C控制器,这里我们以I2C1为例,其中I2C1_SCL连接GPIO4_A2引脚,I2C1_SDA连接GPIO4_A1引脚。
关于RK3399 I2C控制器驱动实现位于drivers/i2c/busses/i2c-rk3x.c文件,I2C控制器驱动是基于platform模型的,主要提供一个algorithm底层的I2C协议的收发函数。
在platform driver中probe函数中:
- 动态分配i2c_adapter,并进行成员初始化,包括设置algo;
- 初始化I2C总线所使用的的GPIO功能复用为I2C;
- 初始化I2C控制器相关的寄存器;
- 获取资源信息,并注册I2C中断处理函数;
- 最后调用i2c_add_adapter将i2c_adapter注册到i2c_bus_type总线,并且注册时会:
- 调用of_i2c_register_devices,解析I2C控制器设备节点的子设备节点,从而调用of_i2c_register_device完成I2C从设备的注册;
- 调用i2c_scan_board_info,扫描并使用i2c_new_device注册I2C从设备。
of_i2c_register_device内部通过调用of_i2c_get_board_info函数解析设备节点rt5651可以得到如下定义的I2C从设备:
struct i2c_board_info info = { // type的值是取自rt5651设备节点compatible属性值,之后的内容 ,compatible = "rockchip,rt5651"得到的就是rt5651 .type = "rt5651", // 会赋值给i2c_client的name字段 .addr = 0x1a, .of_node = rt5651设备节点, };
然后将该I2C从设备注册到系统,更多的细节在这一节我们不去研究。有关I2C驱动的内容可以先参考linux驱动移植-I2C总线设备驱动、linux驱动移植-I2C适配器驱动移植、linux驱动移植-I2C驱动移植(OLED SSD1306),关于RK3399 I2C控制器驱动后面有时间再单独介绍。
三、Codec驱动
3.1 模块入口函数
我们定位到sound/soc/codecs/rt5651.c文件的最后:
module_i2c_driver(rt5651_i2c_driver);
3.1.1 module_i2c_driver
module_i2c_driver宏可以展开为相应驱动模块的init和exit接口,其定义在include/linux/i2c.h:
/** * module_i2c_driver() - Helper macro for registering a modular I2C driver * @__i2c_driver: i2c_driver struct * * Helper macro for I2C drivers which do not do anything special in module * init/exit. This eliminates a lot of boilerplate. Each module may only * use this macro once, and calling it replaces module_init() and module_exit() */ #define module_i2c_driver(__i2c_driver) \ module_driver(__i2c_driver, i2c_add_driver, \ i2c_del_driver)
3.1.2 module_driver
module_driver定义在include/linux/device/driver.h:
/** * module_driver() - Helper macro for drivers that don't do anything * special in module init/exit. This eliminates a lot of boilerplate. * Each module may only use this macro once, and calling it replaces * module_init() and module_exit(). * * @__driver: driver name * @__register: register function for this driver type * @__unregister: unregister function for this driver type * @...: Additional arguments to be passed to __register and __unregister. * * Use this macro to construct bus specific macros for registering * drivers, and do not use it on its own. */ #define module_driver(__driver, __register, __unregister, ...) \ static int __init __driver##_init(void) \ { \ return __register(&(__driver) , ##__VA_ARGS__); \ } \ module_init(__driver##_init); \ static void __exit __driver##_exit(void) \ { \ __unregister(&(__driver) , ##__VA_ARGS__); \ } \ module_exit(__driver##_exit);
3.1.3 展开后
因此如下定义:
module_i2c_driver(rt5651_i2c_driver);
经过上述宏的作用之后,就成为如下形式:
static int __init ov4689_i2c_driver_init(void) { return i2c_add_driver(&rt5651_i2c_driver); } static void __exit ov4689_i2c_driver_exit(void) { return i2c_del_driver(&rt5651_i2c_driver); }
其中i2c_add_driver函数用于注册I2C设备驱动。
3.2 rt5651_i2c_driver
这里我们需要关注一下i2c_driver结构体变量rt5651_i2c_driver :
static struct i2c_driver rt5651_i2c_driver = { .driver = { .name = "rt5651", .acpi_match_table = ACPI_PTR(rt5651_acpi_match), .of_match_table = of_match_ptr(rt5651_of_match), // 用于设备树匹配 }, .probe_new = rt5651_i2c_probe, .id_table = rt5651_i2c_id, };
其成员:
- driver.of_match_table:用于设备树匹配;
- probe:当I2C驱动和I2C从设备信息匹配成功之后,就会调用probe函数;
- id_table:id列表,用于和I2C从设备名称进行匹配;
3.2.1 rt5651_of_match
如果使用了设备树,rt5651_of_match被定义为:
#if defined(CONFIG_OF) static const struct of_device_id rt5651_of_match[] = { { .compatible = "realtek,rt5651", }, // 用来匹配的I2C从设备,匹配设备节点rt5651 {}, /* 最后一个必须为空,表示结束 */ }; MODULE_DEVICE_TABLE(of, rt5651_of_match); #endif
由于在I2C控制器注册的时候为声卡设备注册了I2C从设备(对应数据结构struct i2c_client),其名称为rt5651,因此会与I2C从设备驱动中rt5651_of_match匹配失败。
3.2.2 rt5651_i2c_id
i2c_device_id中存放的是和I2C驱动匹配的I2C从设备的名称,以rt5651_i2c_id为例:
static const struct i2c_device_id rt5651_i2c_id[] = { { "rt5651", 0 }, // 用来匹配的I2C从设备 { } /* 最后一个必须为空,表示结束 */ };
由于在I2C控制器注册的时候为声卡设备注册了I2C从设备(对应数据结构struct i2c_client),其名称为rt5651,因此会与I2C从设备驱动中的rt5651_i2c_id匹配成功,从而进入执行probe探测函数;
3.2.3 rt5651_i2c_probe
probe探测函数rt5651_i2c_probe定义如下:
static int rt5651_i2c_probe(struct i2c_client *i2c) // 参数为I2C从设备 { struct rt5651_priv *rt5651; int ret; int err; rt5651 = devm_kzalloc(&i2c->dev, sizeof(*rt5651), // 动态申请内存,数据结构类型为struct rt5651_priv GFP_KERNEL); if (NULL == rt5651) return -ENOMEM; i2c_set_clientdata(i2c, rt5651); // i2c->dev.driver_data = rt5651 设置为驱动数据 rt5651->regmap = devm_regmap_init_i2c(i2c, &rt5651_regmap); // 注册regmap实例 if (IS_ERR(rt5651->regmap)) { ret = PTR_ERR(rt5651->regmap); dev_err(&i2c->dev, "Failed to allocate register map: %d\n", ret); return ret; }
// 读取RT5651_DEVICE_ID寄存器的值,RT5651_DEVICE_ID值为0xff,寄存器地址0xff存放的是设备ID,数据位宽为16位 err = regmap_read(rt5651->regmap, RT5651_DEVICE_ID, &ret);if (err) // 读取失败 return err; if (ret != RT5651_DEVICE_ID_VALUE) { // 0x6281 dev_err(&i2c->dev, "Device with ID register %#x is not rt5651\n", ret); return -ENODEV; } regmap_write(rt5651->regmap, RT5651_RESET, 0); // 寄存器地址0x00为软件复位寄存器,写入0x00将会复位所有寄存器的 ret = regmap_register_patch(rt5651->regmap, init_list, // 用于初始化rt5651,向一组寄存器中写入值 ARRAY_SIZE(init_list)); if (ret != 0) dev_warn(&i2c->dev, "Failed to apply regmap patch: %d\n", ret); rt5651->irq = i2c->irq; // I2C从设备所使用的的中断编号; 由于rt5651设备节点中并没有配置中断,所以i2c->irq默认值为0 rt5651->hp_mute = true; INIT_DELAYED_WORK(&rt5651->bp_work, rt5651_button_press_work); // 初始化延迟的工作rt5651->bp_work,设置工作函数为rt5651_button_press_work INIT_WORK(&rt5651->jack_detect_work, rt5651_jack_detect_work); // 初始化工作rt5651->jack_detect_work,设置工作函数为rt5651_jack_detect_work /* Make sure work is stopped on probe-error / remove */ ret = devm_add_action_or_reset(&i2c->dev, rt5651_cancel_work, rt5651); if (ret) return ret; ret = devm_request_irq(&i2c->dev, rt5651->irq, rt5651_irq, // 申请I2C中断,中断处理函数为rt5651_irq,;因为没有配置中断,所以这里中断会申请失败 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT | IRQF_NO_AUTOEN, "rt5651", rt5651); if (ret) { dev_warn(&i2c->dev, "Failed to reguest IRQ %d: %d\n", rt5651->irq, ret); rt5651->irq = -ENXIO; } ret = devm_snd_soc_register_component(&i2c->dev, // 注册component &soc_component_dev_rt5651, rt5651_dai, ARRAY_SIZE(rt5651_dai)); return ret; }
(1) 动态申请内存,数据结构类型为struct rt5651_priv,并调用i2c_set_clientdata将其设置为驱动数据;
(2) 调用devm_regmap_init_i2c注册regmap实例,这样i2c驱动驱动就可以正常调用regmap_write和regmap_read函数进行i2c数据传输了;
(3) 读取rt5651设备寄存器地址0xff的值,对于rt5651芯片寄存器地址0xff存放的是设备ID,因此读取到的为0x6281;
(4) 向rt5651软件复位寄存器地址0x00写入0,将所有寄存器的值复位;
(5) 调用regmap_register_patch向一组寄存器中写入值;其中init_list设置为:
static const struct reg_sequence init_list[] = { {RT5651_PR_BASE + 0x3d, 0x3e00}, };
regmap_register_patch定义在drivers/base/regmap/regmap.c:

/** * regmap_register_patch - Register and apply register updates to be applied * on device initialistion * * @map: Register map to apply updates to. * @regs: Values to update. * @num_regs: Number of entries in regs. * * Register a set of register updates to be applied to the device * whenever the device registers are synchronised with the cache and * apply them immediately. Typically this is used to apply * corrections to be applied to the device defaults on startup, such * as the updates some vendors provide to undocumented registers. * * The caller must ensure that this function cannot be called * concurrently with either itself or regcache_sync(). */ int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs, int num_regs) { struct reg_sequence *p; int ret; bool bypass; if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n", num_regs)) return 0; p = krealloc(map->patch, sizeof(struct reg_sequence) * (map->patch_regs + num_regs), GFP_KERNEL); if (p) { memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs)); map->patch = p; map->patch_regs += num_regs; } else { return -ENOMEM; } map->lock(map->lock_arg); bypass = map->cache_bypass; map->cache_bypass = true; map->async = true; ret = _regmap_multi_reg_write(map, regs, num_regs); // 写入多个寄存器 map->async = false; map->cache_bypass = bypass; map->unlock(map->lock_arg); regmap_async_complete(map); return ret; }
(6) 初始化rt5651成员irq、hp_mute;初始化延迟的工作rt5651->bp_work,设置工作函数为rt5651_button_press_work;初始化工作rt5651->jack_detect_work,设置工作函数为rt5651_jack_detect_work;
(7) 调用devm_add_action_or_reset函数Make sure work is stopped on probe-error / remove;
static void rt5651_cancel_work(void *data) { struct rt5651_priv *rt5651 = data; cancel_work_sync(&rt5651->jack_detect_work); cancel_delayed_work_sync(&rt5651->bp_work); }
(8) 申请I2C中断,中断处理函数为rt5651_irq;
static irqreturn_t rt5651_irq(int irq, void *data) { struct rt5651_priv *rt5651 = data; queue_work(system_power_efficient_wq, &rt5651->jack_detect_work); return IRQ_HANDLED; }
由于我们设备节点rt5651中并没有配置中断,因此申请中断会失败,内核启动的时候也会输出相关错误信息;其中rt5651为模块的名称,1-001a为i2c_client->dev设备的名称;
[ 3.465917] rt5651 1-001a: Failed to reguest IRQ 0: -22
(9) 调用devm_snd_soc_register_component注册的component,该函数会动态申请一个component,并将其添加到全局链表component_list中,同时会建立dai_driver与component的关系。
注册component完成后,snd_soc_dai,snd_soc_dai_driver、snd_soc_component、snd_soc_component_driver之间的关系如下图:
其中:
- 新建的snd_soc_component的名称为i2c从设备对应的struct device_driver、struct device实例的名字拼接而成,即rt5651.1-001a;
- snd_soc_component的dai_list链表包含两个dai,第一个dai的名称为rt5651-aif1,第二个dai的名称为rt5651-aif2;
- 每个dai对应一个dai driver,第一个dai driver的名称为rt5651-aif1,第二个dai driver的名称为rt5651-aif2;
3.3 总结
我们在分析了platform驱动的源码之后,我们大致可以得到一个结论,codec驱动注册流程主要包含一下几个步骤:
(1) 构造一个struct snd_soc_component_driver实例,比如这里的soc_component_dev_rt5651,用于描述codec driver;需要初始化成员name、controls、dapm_widgets、dapm_routes等;
(2) 构造一个struct snd_soc_dai_driver,比如这里的rt5651_dai数组,用于描述dai和 pcm的能力和操作;需要初始化成员name、probe、playback、capture、ops等;
(3) 调用devm_snd_soc_register_component注册component;
四、soc_component_dev_rt5651
devm_snd_soc_register_component函数第二个参数为soc_component_dev_rt5651:
static const struct snd_soc_component_driver soc_component_dev_rt5651 = { .probe = rt5651_probe, .suspend = rt5651_suspend, .resume = rt5651_resume, .set_bias_level = rt5651_set_bias_level, .set_jack = rt5651_set_jack, .controls = rt5651_snd_controls, // kcontrol定义 .num_controls = ARRAY_SIZE(rt5651_snd_controls), .dapm_widgets = rt5651_dapm_widgets, // widget定义 .num_dapm_widgets = ARRAY_SIZE(rt5651_dapm_widgets), .dapm_routes = rt5651_dapm_routes, // route定义 .num_dapm_routes = ARRAY_SIZE(rt5651_dapm_routes), .use_pmdown_time = 1, .endianness = 1, };
其中controls、dapm_widgets、dapm_routes是与dapm相关的,可以用来表述codec内部的音频路径,具体参考Rockchip RK3399 - DAPM Widget&Route&Path。
这里我们简单提一下dapm:
(1) 当音频路径发生改变(比如上层使用tinymix工具设置音频通路)时,或发生数据流事件(比如启动或停止播放)时,都会触发dapm去遍历所有邻近的widget,检查是否存在完整的音频路径,如果存在完整的音频路径,则该路径上面的所有widget都是需要上电的,其他widget则下电;
(2) widget的上下电都是dapm根据策略自主控制的,外部无法干预,可以说dapm是一个专门为音频系统设计的自成体系的电源管理模块,独立于Linux电源管理之外。即使SoC休眠了,codec仍可以在正常工作,试想下这个情景:语音通话,modem dai连接到codec dai,语音数据不经过SoC,因此这种情形下SoC可以进入睡眠以降低功耗,只保持Codec正常工作就行了。
在Macine驱动中会进行ASoC声卡的注册,其中会执行soc_probe_component(card, component),即进行component的探测工作,具体流程如下:
- 注册component->driver->dapm_widgets到声卡card的widgets链表中;
- 执行component->driver->probe(component);
- 根据component->driver->controls数组创建并添加多个kcontrol到声卡card的controls链表;
- 遍历component->driver->dapm_routes数组,调用snd_soc_dapm_add_routes将snd_soc_dapm_route动态地生成所需要的snd_soc_dapm_path结构,然后将snd_soc_dapm_path注册到声卡card的paths链表;
- 将component添加到声卡component_dev_list链表;
4.1 DAPM描述
ALC5651功能框图如下所示,该图来自ALC5651 datasheet:
由于这种图只是一张框图,无法看到音频数据流具体路径细节,因此我们在datasheet中又找到了如下一张图:
上图中我们使用箭头标识了一条用于多媒体音频播放右声道的路径,音频通路是:
- AIF1 Playback(snd_soc_dapm_dai_in类型的playback dai widget) --> AIF1RX :AIF表示音频数字接口;
- AIF1RX --> IF1 DAC;
- IF1 DAC --> IF1 DAC1 R;
- IF1 DAC1 R --> DAC MIXR:通过rt5651_dac_r_mix(名称为INF1 Switch)控制通断,由MX29寄存器位14来实现静音控制(0非静音,1静音);
- DAC MIXR --> Audio DSP;
- Audio DSP --> Stereo DAC MIXR:通过rt5651_sto_dac_r_mix(名称DAC R1 Switch)控制通断,由MX2A寄存器位6来实现静音控制(0非静音,1静音);
- Stereo DAC MIXR --> DAC R1;
- DAC R1 --> OUT MIXR :通过rt5651_out_r_mix(名称为DAC R1 Switch)控制通断,由MX52寄存器位0来实现静音控制(0非静音,1静音);
- OUT MIXR --> HPOVOL R:通过hpovol_r_control(名称为Switch)控制通断,由MX02寄存器位6来实现静音控制(0非静音,1静音);
- HPOVOL R --> HPOR MIX:通过rt5651_hpo_mix(名称为HPO MIX HPVOL Switch)控制通断,由MX45寄存器位13来实现静音控制(0非静音,1静音);
- HPOR MIX --> HP Amp;
- HP Amp -> HPO R Playback:通过hpo_r_mute_control(名称为Switch)控制通断,由MX02寄存器位7来实现静音控制(0非静音,1静音);
- HPO R Playback --> HPOR ;
- HPOR --> Headphones(最后一个path定义在Machine驱动中);
其中红色部分表示有相应的kcontrol,即需要switch打开,在该路径中 HPOL 为SND_SOC_DAPM_EP_SINK类型端点,但是路径中并没有SND_SOC_DAPM_EP_SOURCE类型端点。
此外对应的左声道音频路径:
- AIF1 Playback(snd_soc_dapm_dai_in类型的playback dai widget) --> AIF1RX :AIF表示音频数字接口;
- AIF1RX --> IF1 DAC;
- IF1 DAC --> IF1 DAC1 L;
- IF1 DAC1 L --> DAC MIXL:通过rt5651_dac_l_mix(名称为INF1 Switch)控制通断,由MX29寄存器位6来实现静音控制(0非静音,1静音);
- DAC MIXL --> Audio DSP;
- Audio DSP --> Stereo DAC MIXL:通过rt5651_sto_dac_l_mix(名称DAC L1 Switch)控制通断,由MX2A寄存器位14来实现静音控制(0非静音,1静音);
- Stereo DAC MIXL --> DAC L1;
- DAC L1 --> OUT MIXL :通过rt5651_out_l_mix(名称为DAC L1 Switch)控制通断,由MX4F寄存器位0来实现静音控制(0非静音,1静音);
- OUT MIXL --> HPOVOL L:通过hpovol_l_control(名称为Switch)控制通断,由MX02寄存器位14来实现静音控制(0非静音,1静音);
- HPOVOL L --> HPOL MIX:通过rt5651_hpo_mix(名称为HPO MIX HPVOL Switch)控制通断,由MX45寄存器位13来实现静音控制(0非静音,1静音);
- HPOL MIX --> HP Amp;
- HP Amp -> HPO L Playback:通过hpo_l_mute_control(名称为Switch)控制通断,由MX02寄存器位15来实现静音控制(0非静音,1静音);
- HPO L Playback --> HPOL ;
- HPOL --> Headphones(最后一个path定义在Machine驱动中);
4.1.1 定义kcontrol
在sound/soc/codecs/rt5651.c定义了大量的kcontrol,包括普通kcontrol和dapm kcontrol:

static const DECLARE_TLV_DB_SCALE(out_vol_tlv, -4650, 150, 0); static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -6562, 0); static const DECLARE_TLV_DB_SCALE(in_vol_tlv, -3450, 150, 0); static const DECLARE_TLV_DB_MINMAX(adc_vol_tlv, -1762, 3000); static const DECLARE_TLV_DB_SCALE(adc_bst_tlv, 0, 1200, 0); /* {0, +20, +24, +30, +35, +40, +44, +50, +52} dB */ static const DECLARE_TLV_DB_RANGE(bst_tlv, 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0), 1, 1, TLV_DB_SCALE_ITEM(2000, 0, 0), 2, 2, TLV_DB_SCALE_ITEM(2400, 0, 0), 3, 5, TLV_DB_SCALE_ITEM(3000, 500, 0), 6, 6, TLV_DB_SCALE_ITEM(4400, 0, 0), 7, 7, TLV_DB_SCALE_ITEM(5000, 0, 0), 8, 8, TLV_DB_SCALE_ITEM(5200, 0, 0) ); /* Interface data select */ static const char * const rt5651_data_select[] = { "Normal", "Swap", "left copy to right", "right copy to left"}; static SOC_ENUM_SINGLE_DECL(rt5651_if2_dac_enum, RT5651_DIG_INF_DATA, RT5651_IF2_DAC_SEL_SFT, rt5651_data_select); static SOC_ENUM_SINGLE_DECL(rt5651_if2_adc_enum, RT5651_DIG_INF_DATA, RT5651_IF2_ADC_SEL_SFT, rt5651_data_select); static const struct snd_kcontrol_new rt5651_snd_controls[] = { /* Headphone Output Volume */ SOC_DOUBLE_TLV("HP Playback Volume", RT5651_HP_VOL, RT5651_L_VOL_SFT, RT5651_R_VOL_SFT, 39, 1, out_vol_tlv), /* OUTPUT Control */ SOC_DOUBLE_TLV("OUT Playback Volume", RT5651_LOUT_CTRL1, RT5651_L_VOL_SFT, RT5651_R_VOL_SFT, 39, 1, out_vol_tlv), /* DAC Digital Volume */ SOC_DOUBLE("DAC2 Playback Switch", RT5651_DAC2_CTRL, RT5651_M_DAC_L2_VOL_SFT, RT5651_M_DAC_R2_VOL_SFT, 1, 1), SOC_DOUBLE_TLV("DAC1 Playback Volume", RT5651_DAC1_DIG_VOL, RT5651_L_VOL_SFT, RT5651_R_VOL_SFT, 175, 0, dac_vol_tlv), SOC_DOUBLE_TLV("Mono DAC Playback Volume", RT5651_DAC2_DIG_VOL, RT5651_L_VOL_SFT, RT5651_R_VOL_SFT, 175, 0, dac_vol_tlv), /* IN1/IN2/IN3 Control */ SOC_SINGLE_TLV("IN1 Boost", RT5651_IN1_IN2, RT5651_BST_SFT1, 8, 0, bst_tlv), SOC_SINGLE_TLV("IN2 Boost", RT5651_IN1_IN2, RT5651_BST_SFT2, 8, 0, bst_tlv), SOC_SINGLE_TLV("IN3 Boost", RT5651_IN3, RT5651_BST_SFT1, 8, 0, bst_tlv), /* INL/INR Volume Control */ SOC_DOUBLE_TLV("IN Capture Volume", RT5651_INL1_INR1_VOL, RT5651_INL_VOL_SFT, RT5651_INR_VOL_SFT, 31, 1, in_vol_tlv), /* ADC Digital Volume Control */ SOC_DOUBLE("ADC Capture Switch", RT5651_ADC_DIG_VOL, RT5651_L_MUTE_SFT, RT5651_R_MUTE_SFT, 1, 1), SOC_DOUBLE_TLV("ADC Capture Volume", RT5651_ADC_DIG_VOL, RT5651_L_VOL_SFT, RT5651_R_VOL_SFT, 127, 0, adc_vol_tlv), SOC_DOUBLE_TLV("Mono ADC Capture Volume", RT5651_ADC_DATA, RT5651_L_VOL_SFT, RT5651_R_VOL_SFT, 127, 0, adc_vol_tlv), /* ADC Boost Volume Control */ SOC_DOUBLE_TLV("ADC Boost Gain", RT5651_ADC_BST_VOL, RT5651_ADC_L_BST_SFT, RT5651_ADC_R_BST_SFT, 3, 0, adc_bst_tlv), /* ASRC */ SOC_SINGLE("IF1 ASRC Switch", RT5651_PLL_MODE_1, RT5651_STO1_T_SFT, 1, 0), SOC_SINGLE("IF2 ASRC Switch", RT5651_PLL_MODE_1, RT5651_STO2_T_SFT, 1, 0), SOC_SINGLE("DMIC ASRC Switch", RT5651_PLL_MODE_1, RT5651_DMIC_1_M_SFT, 1, 0), SOC_ENUM("ADC IF2 Data Switch", rt5651_if2_adc_enum), SOC_ENUM("DAC IF2 Data Switch", rt5651_if2_dac_enum), }; /* Digital Mixer */ static const struct snd_kcontrol_new rt5651_sto1_adc_l_mix[] = { SOC_DAPM_SINGLE("ADC1 Switch", RT5651_STO1_ADC_MIXER, RT5651_M_STO1_ADC_L1_SFT, 1, 1), SOC_DAPM_SINGLE("ADC2 Switch", RT5651_STO1_ADC_MIXER, RT5651_M_STO1_ADC_L2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_sto1_adc_r_mix[] = { SOC_DAPM_SINGLE("ADC1 Switch", RT5651_STO1_ADC_MIXER, RT5651_M_STO1_ADC_R1_SFT, 1, 1), SOC_DAPM_SINGLE("ADC2 Switch", RT5651_STO1_ADC_MIXER, RT5651_M_STO1_ADC_R2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_sto2_adc_l_mix[] = { SOC_DAPM_SINGLE("ADC1 Switch", RT5651_STO2_ADC_MIXER, RT5651_M_STO2_ADC_L1_SFT, 1, 1), SOC_DAPM_SINGLE("ADC2 Switch", RT5651_STO2_ADC_MIXER, RT5651_M_STO2_ADC_L2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_sto2_adc_r_mix[] = { SOC_DAPM_SINGLE("ADC1 Switch", RT5651_STO2_ADC_MIXER, RT5651_M_STO2_ADC_R1_SFT, 1, 1), SOC_DAPM_SINGLE("ADC2 Switch", RT5651_STO2_ADC_MIXER, RT5651_M_STO2_ADC_R2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_dac_l_mix[] = { SOC_DAPM_SINGLE("Stereo ADC Switch", RT5651_AD_DA_MIXER, RT5651_M_ADCMIX_L_SFT, 1, 1), SOC_DAPM_SINGLE("INF1 Switch", RT5651_AD_DA_MIXER, RT5651_M_IF1_DAC_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_dac_r_mix[] = { SOC_DAPM_SINGLE("Stereo ADC Switch", RT5651_AD_DA_MIXER, RT5651_M_ADCMIX_R_SFT, 1, 1), SOC_DAPM_SINGLE("INF1 Switch", RT5651_AD_DA_MIXER, RT5651_M_IF1_DAC_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_sto_dac_l_mix[] = { SOC_DAPM_SINGLE("DAC L1 Switch", RT5651_STO_DAC_MIXER, RT5651_M_DAC_L1_MIXL_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5651_STO_DAC_MIXER, RT5651_M_DAC_L2_MIXL_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R1 Switch", RT5651_STO_DAC_MIXER, RT5651_M_DAC_R1_MIXL_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_sto_dac_r_mix[] = { SOC_DAPM_SINGLE("DAC R1 Switch", RT5651_STO_DAC_MIXER, RT5651_M_DAC_R1_MIXR_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5651_STO_DAC_MIXER, RT5651_M_DAC_R2_MIXR_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L1 Switch", RT5651_STO_DAC_MIXER, RT5651_M_DAC_L1_MIXR_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_dd_dac_l_mix[] = { SOC_DAPM_SINGLE("DAC L1 Switch", RT5651_DD_MIXER, RT5651_M_STO_DD_L1_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5651_DD_MIXER, RT5651_M_STO_DD_L2_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5651_DD_MIXER, RT5651_M_STO_DD_R2_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_dd_dac_r_mix[] = { SOC_DAPM_SINGLE("DAC R1 Switch", RT5651_DD_MIXER, RT5651_M_STO_DD_R1_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5651_DD_MIXER, RT5651_M_STO_DD_R2_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5651_DD_MIXER, RT5651_M_STO_DD_L2_R_SFT, 1, 1), }; /* Analog Input Mixer */ static const struct snd_kcontrol_new rt5651_rec_l_mix[] = { SOC_DAPM_SINGLE("INL1 Switch", RT5651_REC_L2_MIXER, RT5651_M_IN1_L_RM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST3 Switch", RT5651_REC_L2_MIXER, RT5651_M_BST3_RM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST2 Switch", RT5651_REC_L2_MIXER, RT5651_M_BST2_RM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5651_REC_L2_MIXER, RT5651_M_BST1_RM_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_rec_r_mix[] = { SOC_DAPM_SINGLE("INR1 Switch", RT5651_REC_R2_MIXER, RT5651_M_IN1_R_RM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST3 Switch", RT5651_REC_R2_MIXER, RT5651_M_BST3_RM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST2 Switch", RT5651_REC_R2_MIXER, RT5651_M_BST2_RM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5651_REC_R2_MIXER, RT5651_M_BST1_RM_R_SFT, 1, 1), }; /* Analog Output Mixer */ static const struct snd_kcontrol_new rt5651_out_l_mix[] = { SOC_DAPM_SINGLE("BST1 Switch", RT5651_OUT_L3_MIXER, RT5651_M_BST1_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST2 Switch", RT5651_OUT_L3_MIXER, RT5651_M_BST2_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("INL1 Switch", RT5651_OUT_L3_MIXER, RT5651_M_IN1_L_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("REC MIXL Switch", RT5651_OUT_L3_MIXER, RT5651_M_RM_L_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L1 Switch", RT5651_OUT_L3_MIXER, RT5651_M_DAC_L1_OM_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_out_r_mix[] = { SOC_DAPM_SINGLE("BST2 Switch", RT5651_OUT_R3_MIXER, RT5651_M_BST2_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5651_OUT_R3_MIXER, RT5651_M_BST1_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("INR1 Switch", RT5651_OUT_R3_MIXER, RT5651_M_IN1_R_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("REC MIXR Switch", RT5651_OUT_R3_MIXER, RT5651_M_RM_R_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R1 Switch", RT5651_OUT_R3_MIXER, RT5651_M_DAC_R1_OM_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_hpo_mix[] = { SOC_DAPM_SINGLE("HPO MIX DAC1 Switch", RT5651_HPO_MIXER, RT5651_M_DAC1_HM_SFT, 1, 1), SOC_DAPM_SINGLE("HPO MIX HPVOL Switch", RT5651_HPO_MIXER, RT5651_M_HPVOL_HM_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_lout_mix[] = { SOC_DAPM_SINGLE("DAC L1 Switch", RT5651_LOUT_MIXER, RT5651_M_DAC_L1_LM_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R1 Switch", RT5651_LOUT_MIXER, RT5651_M_DAC_R1_LM_SFT, 1, 1), SOC_DAPM_SINGLE("OUTVOL L Switch", RT5651_LOUT_MIXER, RT5651_M_OV_L_LM_SFT, 1, 1), SOC_DAPM_SINGLE("OUTVOL R Switch", RT5651_LOUT_MIXER, RT5651_M_OV_R_LM_SFT, 1, 1), }; static const struct snd_kcontrol_new outvol_l_control = SOC_DAPM_SINGLE("Switch", RT5651_LOUT_CTRL1, RT5651_VOL_L_SFT, 1, 1); static const struct snd_kcontrol_new outvol_r_control = SOC_DAPM_SINGLE("Switch", RT5651_LOUT_CTRL1, RT5651_VOL_R_SFT, 1, 1); static const struct snd_kcontrol_new lout_l_mute_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5651_LOUT_CTRL1, RT5651_L_MUTE_SFT, 1, 1); static const struct snd_kcontrol_new lout_r_mute_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5651_LOUT_CTRL1, RT5651_R_MUTE_SFT, 1, 1); static const struct snd_kcontrol_new hpovol_l_control = SOC_DAPM_SINGLE("Switch", RT5651_HP_VOL, RT5651_VOL_L_SFT, 1, 1); static const struct snd_kcontrol_new hpovol_r_control = SOC_DAPM_SINGLE("Switch", RT5651_HP_VOL, RT5651_VOL_R_SFT, 1, 1); static const struct snd_kcontrol_new hpo_l_mute_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5651_HP_VOL, RT5651_L_MUTE_SFT, 1, 1); static const struct snd_kcontrol_new hpo_r_mute_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5651_HP_VOL, RT5651_R_MUTE_SFT, 1, 1); /* Stereo ADC source */ static const char * const rt5651_stereo1_adc1_src[] = {"DD MIX", "ADC"}; static SOC_ENUM_SINGLE_DECL( rt5651_stereo1_adc1_enum, RT5651_STO1_ADC_MIXER, RT5651_STO1_ADC_1_SRC_SFT, rt5651_stereo1_adc1_src); static const struct snd_kcontrol_new rt5651_sto1_adc_l1_mux = SOC_DAPM_ENUM("Stereo1 ADC L1 source", rt5651_stereo1_adc1_enum); static const struct snd_kcontrol_new rt5651_sto1_adc_r1_mux = SOC_DAPM_ENUM("Stereo1 ADC R1 source", rt5651_stereo1_adc1_enum); static const char * const rt5651_stereo1_adc2_src[] = {"DMIC", "DD MIX"}; static SOC_ENUM_SINGLE_DECL( rt5651_stereo1_adc2_enum, RT5651_STO1_ADC_MIXER, RT5651_STO1_ADC_2_SRC_SFT, rt5651_stereo1_adc2_src); static const struct snd_kcontrol_new rt5651_sto1_adc_l2_mux = SOC_DAPM_ENUM("Stereo1 ADC L2 source", rt5651_stereo1_adc2_enum); static const struct snd_kcontrol_new rt5651_sto1_adc_r2_mux = SOC_DAPM_ENUM("Stereo1 ADC R2 source", rt5651_stereo1_adc2_enum); /* Mono ADC source */ static const char * const rt5651_sto2_adc_l1_src[] = {"DD MIXL", "ADCL"}; static SOC_ENUM_SINGLE_DECL( rt5651_sto2_adc_l1_enum, RT5651_STO1_ADC_MIXER, RT5651_STO2_ADC_L1_SRC_SFT, rt5651_sto2_adc_l1_src); static const struct snd_kcontrol_new rt5651_sto2_adc_l1_mux = SOC_DAPM_ENUM("Stereo2 ADC1 left source", rt5651_sto2_adc_l1_enum); static const char * const rt5651_sto2_adc_l2_src[] = {"DMIC L", "DD MIXL"}; static SOC_ENUM_SINGLE_DECL( rt5651_sto2_adc_l2_enum, RT5651_STO1_ADC_MIXER, RT5651_STO2_ADC_L2_SRC_SFT, rt5651_sto2_adc_l2_src); static const struct snd_kcontrol_new rt5651_sto2_adc_l2_mux = SOC_DAPM_ENUM("Stereo2 ADC2 left source", rt5651_sto2_adc_l2_enum); static const char * const rt5651_sto2_adc_r1_src[] = {"DD MIXR", "ADCR"}; static SOC_ENUM_SINGLE_DECL( rt5651_sto2_adc_r1_enum, RT5651_STO1_ADC_MIXER, RT5651_STO2_ADC_R1_SRC_SFT, rt5651_sto2_adc_r1_src); static const struct snd_kcontrol_new rt5651_sto2_adc_r1_mux = SOC_DAPM_ENUM("Stereo2 ADC1 right source", rt5651_sto2_adc_r1_enum); static const char * const rt5651_sto2_adc_r2_src[] = {"DMIC R", "DD MIXR"}; static SOC_ENUM_SINGLE_DECL( rt5651_sto2_adc_r2_enum, RT5651_STO1_ADC_MIXER, RT5651_STO2_ADC_R2_SRC_SFT, rt5651_sto2_adc_r2_src); static const struct snd_kcontrol_new rt5651_sto2_adc_r2_mux = SOC_DAPM_ENUM("Stereo2 ADC2 right source", rt5651_sto2_adc_r2_enum); /* DAC2 channel source */ static const char * const rt5651_dac_src[] = {"IF1", "IF2"}; static SOC_ENUM_SINGLE_DECL(rt5651_dac_l2_enum, RT5651_DAC2_CTRL, RT5651_SEL_DAC_L2_SFT, rt5651_dac_src); static const struct snd_kcontrol_new rt5651_dac_l2_mux = SOC_DAPM_ENUM("DAC2 left channel source", rt5651_dac_l2_enum); static SOC_ENUM_SINGLE_DECL( rt5651_dac_r2_enum, RT5651_DAC2_CTRL, RT5651_SEL_DAC_R2_SFT, rt5651_dac_src); static const struct snd_kcontrol_new rt5651_dac_r2_mux = SOC_DAPM_ENUM("DAC2 right channel source", rt5651_dac_r2_enum); /* IF2_ADC channel source */ static const char * const rt5651_adc_src[] = {"IF1 ADC1", "IF1 ADC2"}; static SOC_ENUM_SINGLE_DECL(rt5651_if2_adc_src_enum, RT5651_DIG_INF_DATA, RT5651_IF2_ADC_SRC_SFT, rt5651_adc_src); static const struct snd_kcontrol_new rt5651_if2_adc_src_mux = SOC_DAPM_ENUM("IF2 ADC channel source", rt5651_if2_adc_src_enum); /* PDM select */ static const char * const rt5651_pdm_sel[] = {"DD MIX", "Stereo DAC MIX"}; static SOC_ENUM_SINGLE_DECL( rt5651_pdm_l_sel_enum, RT5651_PDM_CTL, RT5651_PDM_L_SEL_SFT, rt5651_pdm_sel); static SOC_ENUM_SINGLE_DECL( rt5651_pdm_r_sel_enum, RT5651_PDM_CTL, RT5651_PDM_R_SEL_SFT, rt5651_pdm_sel); static const struct snd_kcontrol_new rt5651_pdm_l_mux = SOC_DAPM_ENUM("PDM L select", rt5651_pdm_l_sel_enum); static const struct snd_kcontrol_new rt5651_pdm_r_mux = SOC_DAPM_ENUM("PDM R select", rt5651_pdm_r_sel_enum);
有关kcontrol辅助定义宏我们在Rockchip RK3399 - ASoC 声卡之Control设备 kcontrol章节中已经介绍,比如:
- SOC_SINGLE:最简单的控件了,这种控件只有一个控制量,比如一个开关,或者是一个数值变量(比如Codec中某个频率,FIFO大小等等);
- SOC_SINGLE_TLV:是SOC_SINGLE的一种扩展,主要用于定义那些有增益控制的控件,例如音量控制器,EQ均衡器等等;
- SOC_DOUBLE:与SOC_SINGLE相对应,区别是SOC_SINGLE只控制一个变量,而SOC_DOUBLE则可以同时在一个寄存器中控制两个相似的变量,最常用的就是用于一些立体声的控件;
- SOC_DOUBLE_TLV:与SOC_SINGLE_TLV对应的立体声版本,通常用于立体声音量控件的定义;
- SOC_ENUM:用于定义一个定义一个Mux控件;
有关dapm kcontrol辅助定义宏我们在Rockchip RK3399 - DAPM Widget&Route&Path kcontrol章节中已经介绍,相比普通的kcontrol控件,dapm的kcontrol只是把info,get,put回调函数换掉了,比如:SOC_DAPM_SINGLE:对应普通控件的SOC_SINGLE.
在这些定义中我们可以找到位于多媒体音频播放右声道路径上的dapm kcontrol;
static const struct snd_kcontrol_new rt5651_dac_r_mix[] = { SOC_DAPM_SINGLE("Stereo ADC Switch", RT5651_AD_DA_MIXER, // 寄存器配置为RT5651_AD_DA_MIXER=0x29,偏移位配置为7 RT5651_M_ADCMIX_R_SFT, 1, 1), SOC_DAPM_SINGLE("INF1 Switch", RT5651_AD_DA_MIXER, // 寄存器配置为RT5651_AD_DA_MIXER=0x29,偏移位配置为6 RT5651_M_IF1_DAC_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_sto_dac_r_mix[] = { SOC_DAPM_SINGLE("DAC R1 Switch", RT5651_STO_DAC_MIXER, // 寄存器配置为RT5651_STO_DAC_MIXER=0x2a,偏移位配置为6 RT5651_M_DAC_R1_MIXR_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5651_STO_DAC_MIXER, // 寄存器配置为RT5651_STO_DAC_MIXER=0x2a,偏移位配置为4 RT5651_M_DAC_R2_MIXR_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L1 Switch", RT5651_STO_DAC_MIXER, // 寄存器配置为RT5651_STO_DAC_MIXER=0x2a,偏移位配置为1 RT5651_M_DAC_L1_MIXR_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_out_r_mix[] = { SOC_DAPM_SINGLE("BST2 Switch", RT5651_OUT_R3_MIXER, // 寄存器配置为RT5651_OUT_R3_MIXER=0x52,偏移位配置为5 RT5651_M_BST2_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5651_OUT_R3_MIXER, // 寄存器配置为RT5651_OUT_R3_MIXER=0x52,偏移位配置为6 RT5651_M_BST1_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("INR1 Switch", RT5651_OUT_R3_MIXER, // 寄存器配置为RRT5651_OUT_R3_MIXER=0x52,偏移位配置为4 RT5651_M_IN1_R_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("REC MIXR Switch", RT5651_OUT_R3_MIXER, // 寄存器配置为RT5651_OUT_R3_MIXER=0x4f,偏移位配置为3 RT5651_M_RM_R_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R1 Switch", RT5651_OUT_R3_MIXER, // 寄存器配置为RT5651_OUT_R3_MIXER,偏移位配置为0 RT5651_M_DAC_R1_OM_R_SFT, 1, 1), }; static const struct snd_kcontrol_new hpovol_r_control = SOC_DAPM_SINGLE("Switch", RT5651_HP_VOL, // 寄存器配置为RT5651_HP_VOL=0x02,偏移位配置为6 RT5651_VOL_R_SFT, 1, 1); static const struct snd_kcontrol_new rt5651_hpo_mix[] = { SOC_DAPM_SINGLE("HPO MIX DAC1 Switch", RT5651_HPO_MIXER, // 寄存器配置为RT5651_HPO_MIXER=0x45,偏移位配置为14 RT5651_M_DAC1_HM_SFT, 1, 1), SOC_DAPM_SINGLE("HPO MIX HPVOL Switch", RT5651_HPO_MIXER, // 寄存器配置为RT5651_HPO_MIXER=0x45,偏移位配置为13 RT5651_M_HPVOL_HM_SFT, 1, 1), }; static const struct snd_kcontrol_new hpo_r_mute_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5651_HP_VOL, // 寄存器配置为RT5651_HP_VOL=0x02,偏移位配置为7 RT5651_R_MUTE_SFT, 1, 1);
左声道:
static const struct snd_kcontrol_new rt5651_dac_l_mix[] = { SOC_DAPM_SINGLE("Stereo ADC Switch", RT5651_AD_DA_MIXER, // 寄存器配置为RT5651_AD_DA_MIXER=0x29,偏移位配置为15 RT5651_M_ADCMIX_L_SFT, 1, 1), SOC_DAPM_SINGLE("INF1 Switch", RT5651_AD_DA_MIXER, // 寄存器配置为RT5651_AD_DA_MIXER=0x29,偏移位配置为14 RT5651_M_IF1_DAC_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_sto_dac_l_mix[] = { SOC_DAPM_SINGLE("DAC L1 Switch", RT5651_STO_DAC_MIXER, // 寄存器配置为RT5651_STO_DAC_MIXER=0x2a,偏移位配置为14 RT5651_M_DAC_L1_MIXL_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5651_STO_DAC_MIXER, // 寄存器配置为RT5651_STO_DAC_MIXER=0x2a,偏移位配置为12 RT5651_M_DAC_L2_MIXL_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R1 Switch", RT5651_STO_DAC_MIXER, // 寄存器配置为RT5651_STO_DAC_MIXER=0x2a,偏移位配置为9 RT5651_M_DAC_R1_MIXL_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5651_out_l_mix[] = { SOC_DAPM_SINGLE("BST1 Switch", RT5651_OUT_L3_MIXER, // 寄存器配置为RT5651_OUT_L3_MIXER=0x4f,偏移位配置为5 RT5651_M_BST1_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST2 Switch", RT5651_OUT_L3_MIXER, // 寄存器配置为RT5651_OUT_L3_MIXER=0x4f,偏移位配置为6 RT5651_M_BST2_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("INL1 Switch", RT5651_OUT_L3_MIXER, // 寄存器配置为RT5651_OUT_L3_MIXER=0x4f,偏移位配置为4 RT5651_M_IN1_L_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("REC MIXL Switch", RT5651_OUT_L3_MIXER, // 寄存器配置为RT5651_OUT_L3_MIXER=0x4f,偏移位配置为3 RT5651_M_RM_L_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L1 Switch", RT5651_OUT_L3_MIXER, // 寄存器配置为RT5651_OUT_L3_MIXER=0x4f,偏移位配置为0 RT5651_M_DAC_L1_OM_L_SFT, 1, 1), }; static const struct snd_kcontrol_new hpovol_l_control = SOC_DAPM_SINGLE("Switch", RT5651_HP_VOL, // 寄存器配置为RT5651_HP_VOL=0x02,偏移位配置为14 RT5651_VOL_L_SFT, 1, 1); static const struct snd_kcontrol_new rt5651_hpo_mix[] = { SOC_DAPM_SINGLE("HPO MIX DAC1 Switch", RT5651_HPO_MIXER, // 寄存器配置为RT5651_HPO_MIXER=0x45,偏移位配置为14 RT5651_M_DAC1_HM_SFT, 1, 1), SOC_DAPM_SINGLE("HPO MIX HPVOL Switch", RT5651_HPO_MIXER, // 寄存器配置为RT5651_HPO_MIXER=0x45,偏移位配置为13 RT5651_M_HPVOL_HM_SFT, 1, 1), }; static const struct snd_kcontrol_new hpo_l_mute_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5651_HP_VOL, // 寄存器配置为RT5651_HP_VOL=0x02,偏移位配置为15 RT5651_L_MUTE_SFT, 1, 1);
4.1.2 定义widget
在sound/soc/codecs/rt5651.c定义了大量的widget:

static const struct snd_soc_dapm_widget rt5651_dapm_widgets[] = { /* ASRC */ SND_SOC_DAPM_SUPPLY_S("I2S1 ASRC", 1, RT5651_PLL_MODE_2, 15, 0, NULL, 0), SND_SOC_DAPM_SUPPLY_S("I2S2 ASRC", 1, RT5651_PLL_MODE_2, 14, 0, NULL, 0), SND_SOC_DAPM_SUPPLY_S("STO1 DAC ASRC", 1, RT5651_PLL_MODE_2, 13, 0, NULL, 0), SND_SOC_DAPM_SUPPLY_S("STO2 DAC ASRC", 1, RT5651_PLL_MODE_2, 12, 0, NULL, 0), SND_SOC_DAPM_SUPPLY_S("ADC ASRC", 1, RT5651_PLL_MODE_2, 11, 0, NULL, 0), /* micbias */ SND_SOC_DAPM_SUPPLY("LDO", RT5651_PWR_ANLG1, RT5651_PWR_LDO_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("micbias1", RT5651_PWR_ANLG2, RT5651_PWR_MB1_BIT, 0, NULL, 0), /* Input Lines */ SND_SOC_DAPM_INPUT("MIC1"), SND_SOC_DAPM_INPUT("MIC2"), SND_SOC_DAPM_INPUT("MIC3"), SND_SOC_DAPM_INPUT("IN1P"), SND_SOC_DAPM_INPUT("IN2P"), SND_SOC_DAPM_INPUT("IN2N"), SND_SOC_DAPM_INPUT("IN3P"), SND_SOC_DAPM_INPUT("DMIC L1"), SND_SOC_DAPM_INPUT("DMIC R1"), SND_SOC_DAPM_SUPPLY("DMIC CLK", RT5651_DMIC, RT5651_DMIC_1_EN_SFT, 0, set_dmic_clk, SND_SOC_DAPM_PRE_PMU), /* Boost */ SND_SOC_DAPM_PGA_E("BST1", RT5651_PWR_ANLG2, RT5651_PWR_BST1_BIT, 0, NULL, 0, rt5651_bst1_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_PGA_E("BST2", RT5651_PWR_ANLG2, RT5651_PWR_BST2_BIT, 0, NULL, 0, rt5651_bst2_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_PGA_E("BST3", RT5651_PWR_ANLG2, RT5651_PWR_BST3_BIT, 0, NULL, 0, rt5651_bst3_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), /* Input Volume */ SND_SOC_DAPM_PGA("INL1 VOL", RT5651_PWR_VOL, RT5651_PWR_IN1_L_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("INR1 VOL", RT5651_PWR_VOL, RT5651_PWR_IN1_R_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("INL2 VOL", RT5651_PWR_VOL, RT5651_PWR_IN2_L_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("INR2 VOL", RT5651_PWR_VOL, RT5651_PWR_IN2_R_BIT, 0, NULL, 0), /* REC Mixer */ SND_SOC_DAPM_MIXER("RECMIXL", RT5651_PWR_MIXER, RT5651_PWR_RM_L_BIT, 0, rt5651_rec_l_mix, ARRAY_SIZE(rt5651_rec_l_mix)), SND_SOC_DAPM_MIXER("RECMIXR", RT5651_PWR_MIXER, RT5651_PWR_RM_R_BIT, 0, rt5651_rec_r_mix, ARRAY_SIZE(rt5651_rec_r_mix)), /* ADCs */ SND_SOC_DAPM_ADC("ADC L", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_ADC("ADC R", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_SUPPLY("ADC L Power", RT5651_PWR_DIG1, RT5651_PWR_ADC_L_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("ADC R Power", RT5651_PWR_DIG1, RT5651_PWR_ADC_R_BIT, 0, NULL, 0), /* ADC Mux */ SND_SOC_DAPM_MUX("Stereo1 ADC L2 Mux", SND_SOC_NOPM, 0, 0, &rt5651_sto1_adc_l2_mux), SND_SOC_DAPM_MUX("Stereo1 ADC R2 Mux", SND_SOC_NOPM, 0, 0, &rt5651_sto1_adc_r2_mux), SND_SOC_DAPM_MUX("Stereo1 ADC L1 Mux", SND_SOC_NOPM, 0, 0, &rt5651_sto1_adc_l1_mux), SND_SOC_DAPM_MUX("Stereo1 ADC R1 Mux", SND_SOC_NOPM, 0, 0, &rt5651_sto1_adc_r1_mux), SND_SOC_DAPM_MUX("Stereo2 ADC L2 Mux", SND_SOC_NOPM, 0, 0, &rt5651_sto2_adc_l2_mux), SND_SOC_DAPM_MUX("Stereo2 ADC L1 Mux", SND_SOC_NOPM, 0, 0, &rt5651_sto2_adc_l1_mux), SND_SOC_DAPM_MUX("Stereo2 ADC R1 Mux", SND_SOC_NOPM, 0, 0, &rt5651_sto2_adc_r1_mux), SND_SOC_DAPM_MUX("Stereo2 ADC R2 Mux", SND_SOC_NOPM, 0, 0, &rt5651_sto2_adc_r2_mux), /* ADC Mixer */ SND_SOC_DAPM_SUPPLY("Stereo1 Filter", RT5651_PWR_DIG2, RT5651_PWR_ADC_STO1_F_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Stereo2 Filter", RT5651_PWR_DIG2, RT5651_PWR_ADC_STO2_F_BIT, 0, NULL, 0), SND_SOC_DAPM_MIXER("Stereo1 ADC MIXL", SND_SOC_NOPM, 0, 0, rt5651_sto1_adc_l_mix, ARRAY_SIZE(rt5651_sto1_adc_l_mix)), SND_SOC_DAPM_MIXER("Stereo1 ADC MIXR", SND_SOC_NOPM, 0, 0, rt5651_sto1_adc_r_mix, ARRAY_SIZE(rt5651_sto1_adc_r_mix)), SND_SOC_DAPM_MIXER("Stereo2 ADC MIXL", SND_SOC_NOPM, 0, 0, rt5651_sto2_adc_l_mix, ARRAY_SIZE(rt5651_sto2_adc_l_mix)), SND_SOC_DAPM_MIXER("Stereo2 ADC MIXR", SND_SOC_NOPM, 0, 0, rt5651_sto2_adc_r_mix, ARRAY_SIZE(rt5651_sto2_adc_r_mix)), /* Digital Interface */ SND_SOC_DAPM_SUPPLY("I2S1", RT5651_PWR_DIG1, RT5651_PWR_I2S1_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 DAC", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 DAC1 L", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 DAC1 R", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 ADC1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 DAC2 L", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 DAC2 R", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 ADC2", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("I2S2", RT5651_PWR_DIG1, RT5651_PWR_I2S2_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("IF2 DAC", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF2 DAC L", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF2 DAC R", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MUX("IF2 ADC", SND_SOC_NOPM, 0, 0, &rt5651_if2_adc_src_mux), /* Digital Interface Select */ SND_SOC_DAPM_MUX("PDM L Mux", RT5651_PDM_CTL, RT5651_M_PDM_L_SFT, 1, &rt5651_pdm_l_mux), SND_SOC_DAPM_MUX("PDM R Mux", RT5651_PDM_CTL, RT5651_M_PDM_R_SFT, 1, &rt5651_pdm_r_mux), /* Audio Interface */ SND_SOC_DAPM_AIF_IN("AIF1RX", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF1TX", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("AIF2RX", "AIF2 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF2TX", "AIF2 Capture", 0, SND_SOC_NOPM, 0, 0), /* Audio DSP */ SND_SOC_DAPM_PGA("Audio DSP", SND_SOC_NOPM, 0, 0, NULL, 0), /* Output Side */ /* DAC mixer before sound effect */ SND_SOC_DAPM_MIXER("DAC MIXL", SND_SOC_NOPM, 0, 0, rt5651_dac_l_mix, ARRAY_SIZE(rt5651_dac_l_mix)), SND_SOC_DAPM_MIXER("DAC MIXR", SND_SOC_NOPM, 0, 0, rt5651_dac_r_mix, ARRAY_SIZE(rt5651_dac_r_mix)), /* DAC2 channel Mux */ SND_SOC_DAPM_MUX("DAC L2 Mux", SND_SOC_NOPM, 0, 0, &rt5651_dac_l2_mux), SND_SOC_DAPM_MUX("DAC R2 Mux", SND_SOC_NOPM, 0, 0, &rt5651_dac_r2_mux), SND_SOC_DAPM_PGA("DAC L2 Volume", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("DAC R2 Volume", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Stero1 DAC Power", RT5651_PWR_DIG2, RT5651_PWR_DAC_STO1_F_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Stero2 DAC Power", RT5651_PWR_DIG2, RT5651_PWR_DAC_STO2_F_BIT, 0, NULL, 0), /* DAC Mixer */ SND_SOC_DAPM_MIXER("Stereo DAC MIXL", SND_SOC_NOPM, 0, 0, rt5651_sto_dac_l_mix, ARRAY_SIZE(rt5651_sto_dac_l_mix)), SND_SOC_DAPM_MIXER("Stereo DAC MIXR", SND_SOC_NOPM, 0, 0, rt5651_sto_dac_r_mix, ARRAY_SIZE(rt5651_sto_dac_r_mix)), SND_SOC_DAPM_MIXER("DD MIXL", SND_SOC_NOPM, 0, 0, rt5651_dd_dac_l_mix, ARRAY_SIZE(rt5651_dd_dac_l_mix)), SND_SOC_DAPM_MIXER("DD MIXR", SND_SOC_NOPM, 0, 0, rt5651_dd_dac_r_mix, ARRAY_SIZE(rt5651_dd_dac_r_mix)), /* DACs */ SND_SOC_DAPM_DAC("DAC L1", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("DAC R1", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_SUPPLY("DAC L1 Power", RT5651_PWR_DIG1, RT5651_PWR_DAC_L1_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAC R1 Power", RT5651_PWR_DIG1, RT5651_PWR_DAC_R1_BIT, 0, NULL, 0), /* OUT Mixer */ SND_SOC_DAPM_MIXER("OUT MIXL", RT5651_PWR_MIXER, RT5651_PWR_OM_L_BIT, 0, rt5651_out_l_mix, ARRAY_SIZE(rt5651_out_l_mix)), SND_SOC_DAPM_MIXER("OUT MIXR", RT5651_PWR_MIXER, RT5651_PWR_OM_R_BIT, 0, rt5651_out_r_mix, ARRAY_SIZE(rt5651_out_r_mix)), /* Ouput Volume */ SND_SOC_DAPM_SWITCH("OUTVOL L", RT5651_PWR_VOL, RT5651_PWR_OV_L_BIT, 0, &outvol_l_control), SND_SOC_DAPM_SWITCH("OUTVOL R", RT5651_PWR_VOL, RT5651_PWR_OV_R_BIT, 0, &outvol_r_control), SND_SOC_DAPM_SWITCH("HPOVOL L", RT5651_PWR_VOL, RT5651_PWR_HV_L_BIT, 0, &hpovol_l_control), SND_SOC_DAPM_SWITCH("HPOVOL R", RT5651_PWR_VOL, RT5651_PWR_HV_R_BIT, 0, &hpovol_r_control), SND_SOC_DAPM_PGA("INL1", RT5651_PWR_VOL, RT5651_PWR_IN1_L_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("INR1", RT5651_PWR_VOL, RT5651_PWR_IN1_R_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("INL2", RT5651_PWR_VOL, RT5651_PWR_IN2_L_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("INR2", RT5651_PWR_VOL, RT5651_PWR_IN2_R_BIT, 0, NULL, 0), /* HPO/LOUT/Mono Mixer */ SND_SOC_DAPM_MIXER("HPOL MIX", SND_SOC_NOPM, 0, 0, rt5651_hpo_mix, ARRAY_SIZE(rt5651_hpo_mix)), SND_SOC_DAPM_MIXER("HPOR MIX", SND_SOC_NOPM, 0, 0, rt5651_hpo_mix, ARRAY_SIZE(rt5651_hpo_mix)), SND_SOC_DAPM_SUPPLY("HP L Amp", RT5651_PWR_ANLG1, RT5651_PWR_HP_L_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("HP R Amp", RT5651_PWR_ANLG1, RT5651_PWR_HP_R_BIT, 0, NULL, 0), SND_SOC_DAPM_MIXER("LOUT MIX", RT5651_PWR_ANLG1, RT5651_PWR_LM_BIT, 0, rt5651_lout_mix, ARRAY_SIZE(rt5651_lout_mix)), SND_SOC_DAPM_SUPPLY("Amp Power", RT5651_PWR_ANLG1, RT5651_PWR_HA_BIT, 0, rt5651_amp_power_event, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_PGA_S("HP Amp", 1, SND_SOC_NOPM, 0, 0, rt5651_hp_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_SWITCH("HPO L Playback", SND_SOC_NOPM, 0, 0, &hpo_l_mute_control), SND_SOC_DAPM_SWITCH("HPO R Playback", SND_SOC_NOPM, 0, 0, &hpo_r_mute_control), SND_SOC_DAPM_SWITCH("LOUT L Playback", SND_SOC_NOPM, 0, 0, &lout_l_mute_control), SND_SOC_DAPM_SWITCH("LOUT R Playback", SND_SOC_NOPM, 0, 0, &lout_r_mute_control), SND_SOC_DAPM_POST("HP Post", rt5651_hp_post_event), /* Output Lines */ SND_SOC_DAPM_OUTPUT("HPOL"), SND_SOC_DAPM_OUTPUT("HPOR"), SND_SOC_DAPM_OUTPUT("LOUTL"), SND_SOC_DAPM_OUTPUT("LOUTR"), SND_SOC_DAPM_OUTPUT("PDML"), SND_SOC_DAPM_OUTPUT("PDMR"), };
在rt5651_dapm_widgets中我们可以找到位于多媒体音频播放右声道路径上的widget;
/* Audio Interface */ SND_SOC_DAPM_AIF_IN("AIF1RX", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), // 无寄存器 /* Digital Interface */ SND_SOC_DAPM_PGA("IF1 DAC", SND_SOC_NOPM, 0, 0, NULL, 0), // 虚拟widget SND_SOC_DAPM_PGA("IF1 DAC1 R", SND_SOC_NOPM, 0, 0, NULL, 0), // 虚拟widget /* Output Side */ /* DAC mixer before sound effect */ SND_SOC_DAPM_MIXER("DAC MIXR", SND_SOC_NOPM, 0, 0, //Right DAC Mixer包含2个kcontrol,每个kcontrol控制着Mixer的一个输入端的开启和关闭 rt5651_dac_r_mix, ARRAY_SIZE(rt5651_dac_r_mix)), /* Audio DSP */ SND_SOC_DAPM_PGA("Audio DSP", SND_SOC_NOPM, 0, 0, NULL, 0), /* DAC Mixer */ SND_SOC_DAPM_MIXER("Stereo DAC MIXR", SND_SOC_NOPM, 0, 0, // Right Stereo DAC Mixer包含3个kcontrol,每个kcontrol控制着Mixer的一个输入端的开启和关闭 rt5651_sto_dac_r_mix, ARRAY_SIZE(rt5651_sto_dac_r_mix)), /* DACs */ SND_SOC_DAPM_DAC("DAC R1", NULL, SND_SOC_NOPM, 0, 0), /* OUT Mixer */ SND_SOC_DAPM_MIXER("OUT MIXR", RT5651_PWR_MIXER, RT5651_PWR_OM_R_BIT, // Right Output Mixer包含5个kcontrol,每个kcontrol控制着Mixer的一个输入端的开启和关闭 0, rt5651_out_r_mix, ARRAY_SIZE(rt5651_out_r_mix)), /* Ouput Volume */ SND_SOC_DAPM_SWITCH("HPOVOL R", RT5651_PWR_VOL, // Right HPO Volume包含1个kcontrol,用于控制开关的通断 RT5651_PWR_HV_R_BIT, 0, &hpovol_r_control), /* HPO/LOUT/Mono Mixer */ SND_SOC_DAPM_MIXER("HPOR MIX", SND_SOC_NOPM, 0, 0, // Right HPO Mixer包含2个kcontrol,每个kcontrol控制着Mixer的一个输入端的开启和关闭 rt5651_hpo_mix, ARRAY_SIZE(rt5651_hpo_mix)), SND_SOC_DAPM_PGA_S("HP Amp", 1, SND_SOC_NOPM, 0, 0, rt5651_hp_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_SWITCH("HPO R Playback", SND_SOC_NOPM, 0, 0, // Right HPO Playback包含1个kcontrol,用于控制开关的通断 &hpo_r_mute_control), /* Output Lines */ SND_SOC_DAPM_OUTPUT("HPOR"), // HPOR为ALC5651的Right HPO Output引脚,可以用来外耳机
左声道:
/* Audio Interface */ SND_SOC_DAPM_AIF_IN("AIF1RX", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), // 无寄存器 /* Digital Interface */ SND_SOC_DAPM_PGA("IF1 DAC", SND_SOC_NOPM, 0, 0, NULL, 0), // 虚拟widget SND_SOC_DAPM_PGA("IF1 DAC1 L", SND_SOC_NOPM, 0, 0, NULL, 0), // 虚拟widget /* Output Side */ /* DAC mixer before sound effect */ SND_SOC_DAPM_MIXER("DAC MIXL", SND_SOC_NOPM, 0, 0, // Left DAC Mixer包含2个kcontrol,每个kcontrol控制着Mixer的一个输入端的开启和关闭 rt5651_dac_l_mix, ARRAY_SIZE(rt5651_dac_l_mix)), /* Audio DSP */ SND_SOC_DAPM_PGA("Audio DSP", SND_SOC_NOPM, 0, 0, NULL, 0), /* DAC Mixer */ SND_SOC_DAPM_MIXER("Stereo DAC MIXL", SND_SOC_NOPM, 0, 0, // Left Stereo DAC Mixer包含3个kcontrol,每个kcontrol控制着Mixer的一个输入端的开启和关闭 rt5651_sto_dac_l_mix, ARRAY_SIZE(rt5651_sto_dac_l_mix)), /* DACs */ SND_SOC_DAPM_DAC("DAC L1", NULL, SND_SOC_NOPM, 0, 0), /* OUT Mixer */ SND_SOC_DAPM_MIXER("OUT MIXL", RT5651_PWR_MIXER, RT5651_PWR_OM_L_BIT, // Left Output Mixer包含5个kcontrol,每个kcontrol控制着Mixer的一个输入端的开启和关闭 0, rt5651_out_l_mix, ARRAY_SIZE(rt5651_out_l_mix)), /* Ouput Volume */ SND_SOC_DAPM_SWITCH("HPOVOL L", RT5651_PWR_VOL, // Left HPO Volume包含1个kcontrol,用于控制开关的通断 RT5651_PWR_HV_L_BIT, 0, &hpovol_l_control), /* HPO/LOUT/Mono Mixer */ SND_SOC_DAPM_MIXER("HPOL MIX", SND_SOC_NOPM, 0, 0, // Left HPO Mixer包含2个kcontrol,每个kcontrol控制着Mixer的一个输入端的开启和关闭 rt5651_hpo_mix, ARRAY_SIZE(rt5651_hpo_mix)), SND_SOC_DAPM_PGA_S("HP Amp", 1, SND_SOC_NOPM, 0, 0, rt5651_hp_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_SWITCH("HPO L Playback", SND_SOC_NOPM, 0, 0, // Left HPO Playback包含1个kcontrol,用于控制开关的通断 &hpo_l_mute_control), /* Output Lines */ SND_SOC_DAPM_OUTPUT("HPOL"), // HPOL为ALC5651的Left HPO Output引脚,可以用来外耳机
不知道你有没有注意到,上面定义的这些widget都没有设置相应的电源控制寄存器。
4.1.3 定义route
在sound/soc/codecs/rt5651.c定义了widget的链接路径:

static const struct snd_soc_dapm_route rt5651_dapm_routes[] = { {"Stero1 DAC Power", NULL, "STO1 DAC ASRC"}, {"Stero2 DAC Power", NULL, "STO2 DAC ASRC"}, {"I2S1", NULL, "I2S1 ASRC"}, {"I2S2", NULL, "I2S2 ASRC"}, {"IN1P", NULL, "LDO"}, {"IN2P", NULL, "LDO"}, {"IN3P", NULL, "LDO"}, {"IN1P", NULL, "MIC1"}, {"IN2P", NULL, "MIC2"}, {"IN2N", NULL, "MIC2"}, {"IN3P", NULL, "MIC3"}, {"BST1", NULL, "IN1P"}, {"BST2", NULL, "IN2P"}, {"BST2", NULL, "IN2N"}, {"BST3", NULL, "IN3P"}, {"INL1 VOL", NULL, "IN2P"}, {"INR1 VOL", NULL, "IN2N"}, {"RECMIXL", "INL1 Switch", "INL1 VOL"}, {"RECMIXL", "BST3 Switch", "BST3"}, {"RECMIXL", "BST2 Switch", "BST2"}, {"RECMIXL", "BST1 Switch", "BST1"}, {"RECMIXR", "INR1 Switch", "INR1 VOL"}, {"RECMIXR", "BST3 Switch", "BST3"}, {"RECMIXR", "BST2 Switch", "BST2"}, {"RECMIXR", "BST1 Switch", "BST1"}, {"ADC L", NULL, "RECMIXL"}, {"ADC L", NULL, "ADC L Power"}, {"ADC R", NULL, "RECMIXR"}, {"ADC R", NULL, "ADC R Power"}, {"DMIC L1", NULL, "DMIC CLK"}, {"DMIC R1", NULL, "DMIC CLK"}, {"Stereo1 ADC L2 Mux", "DMIC", "DMIC L1"}, {"Stereo1 ADC L2 Mux", "DD MIX", "DD MIXL"}, {"Stereo1 ADC L1 Mux", "ADC", "ADC L"}, {"Stereo1 ADC L1 Mux", "DD MIX", "DD MIXL"}, {"Stereo1 ADC R1 Mux", "ADC", "ADC R"}, {"Stereo1 ADC R1 Mux", "DD MIX", "DD MIXR"}, {"Stereo1 ADC R2 Mux", "DMIC", "DMIC R1"}, {"Stereo1 ADC R2 Mux", "DD MIX", "DD MIXR"}, {"Stereo2 ADC L2 Mux", "DMIC L", "DMIC L1"}, {"Stereo2 ADC L2 Mux", "DD MIXL", "DD MIXL"}, {"Stereo2 ADC L1 Mux", "DD MIXL", "DD MIXL"}, {"Stereo2 ADC L1 Mux", "ADCL", "ADC L"}, {"Stereo2 ADC R1 Mux", "DD MIXR", "DD MIXR"}, {"Stereo2 ADC R1 Mux", "ADCR", "ADC R"}, {"Stereo2 ADC R2 Mux", "DMIC R", "DMIC R1"}, {"Stereo2 ADC R2 Mux", "DD MIXR", "DD MIXR"}, {"Stereo1 ADC MIXL", "ADC1 Switch", "Stereo1 ADC L1 Mux"}, {"Stereo1 ADC MIXL", "ADC2 Switch", "Stereo1 ADC L2 Mux"}, {"Stereo1 ADC MIXL", NULL, "Stereo1 Filter"}, {"Stereo1 Filter", NULL, "ADC ASRC"}, {"Stereo1 ADC MIXR", "ADC1 Switch", "Stereo1 ADC R1 Mux"}, {"Stereo1 ADC MIXR", "ADC2 Switch", "Stereo1 ADC R2 Mux"}, {"Stereo1 ADC MIXR", NULL, "Stereo1 Filter"}, {"Stereo2 ADC MIXL", "ADC1 Switch", "Stereo2 ADC L1 Mux"}, {"Stereo2 ADC MIXL", "ADC2 Switch", "Stereo2 ADC L2 Mux"}, {"Stereo2 ADC MIXL", NULL, "Stereo2 Filter"}, {"Stereo2 Filter", NULL, "ADC ASRC"}, {"Stereo2 ADC MIXR", "ADC1 Switch", "Stereo2 ADC R1 Mux"}, {"Stereo2 ADC MIXR", "ADC2 Switch", "Stereo2 ADC R2 Mux"}, {"Stereo2 ADC MIXR", NULL, "Stereo2 Filter"}, {"IF1 ADC2", NULL, "Stereo2 ADC MIXL"}, {"IF1 ADC2", NULL, "Stereo2 ADC MIXR"}, {"IF1 ADC1", NULL, "Stereo1 ADC MIXL"}, {"IF1 ADC1", NULL, "Stereo1 ADC MIXR"}, {"IF1 ADC1", NULL, "I2S1"}, {"IF2 ADC", "IF1 ADC1", "IF1 ADC1"}, {"IF2 ADC", "IF1 ADC2", "IF1 ADC2"}, {"IF2 ADC", NULL, "I2S2"}, {"AIF1TX", NULL, "IF1 ADC1"}, {"AIF1TX", NULL, "IF1 ADC2"}, {"AIF2TX", NULL, "IF2 ADC"}, {"IF1 DAC", NULL, "AIF1RX"}, {"IF1 DAC", NULL, "I2S1"}, {"IF2 DAC", NULL, "AIF2RX"}, {"IF2 DAC", NULL, "I2S2"}, {"IF1 DAC1 L", NULL, "IF1 DAC"}, {"IF1 DAC1 R", NULL, "IF1 DAC"}, {"IF1 DAC2 L", NULL, "IF1 DAC"}, {"IF1 DAC2 R", NULL, "IF1 DAC"}, {"IF2 DAC L", NULL, "IF2 DAC"}, {"IF2 DAC R", NULL, "IF2 DAC"}, {"DAC MIXL", "Stereo ADC Switch", "Stereo1 ADC MIXL"}, {"DAC MIXL", "INF1 Switch", "IF1 DAC1 L"}, {"DAC MIXR", "Stereo ADC Switch", "Stereo1 ADC MIXR"}, {"DAC MIXR", "INF1 Switch", "IF1 DAC1 R"}, {"Audio DSP", NULL, "DAC MIXL"}, {"Audio DSP", NULL, "DAC MIXR"}, {"DAC L2 Mux", "IF1", "IF1 DAC2 L"}, {"DAC L2 Mux", "IF2", "IF2 DAC L"}, {"DAC L2 Volume", NULL, "DAC L2 Mux"}, {"DAC R2 Mux", "IF1", "IF1 DAC2 R"}, {"DAC R2 Mux", "IF2", "IF2 DAC R"}, {"DAC R2 Volume", NULL, "DAC R2 Mux"}, {"Stereo DAC MIXL", "DAC L1 Switch", "Audio DSP"}, {"Stereo DAC MIXL", "DAC L2 Switch", "DAC L2 Volume"}, {"Stereo DAC MIXL", "DAC R1 Switch", "DAC MIXR"}, {"Stereo DAC MIXL", NULL, "Stero1 DAC Power"}, {"Stereo DAC MIXL", NULL, "Stero2 DAC Power"}, {"Stereo DAC MIXR", "DAC R1 Switch", "Audio DSP"}, {"Stereo DAC MIXR", "DAC R2 Switch", "DAC R2 Volume"}, {"Stereo DAC MIXR", "DAC L1 Switch", "DAC MIXL"}, {"Stereo DAC MIXR", NULL, "Stero1 DAC Power"}, {"Stereo DAC MIXR", NULL, "Stero2 DAC Power"}, {"PDM L Mux", "Stereo DAC MIX", "Stereo DAC MIXL"}, {"PDM L Mux", "DD MIX", "DAC MIXL"}, {"PDM R Mux", "Stereo DAC MIX", "Stereo DAC MIXR"}, {"PDM R Mux", "DD MIX", "DAC MIXR"}, {"DAC L1", NULL, "Stereo DAC MIXL"}, {"DAC L1", NULL, "DAC L1 Power"}, {"DAC R1", NULL, "Stereo DAC MIXR"}, {"DAC R1", NULL, "DAC R1 Power"}, {"DD MIXL", "DAC L1 Switch", "DAC MIXL"}, {"DD MIXL", "DAC L2 Switch", "DAC L2 Volume"}, {"DD MIXL", "DAC R2 Switch", "DAC R2 Volume"}, {"DD MIXL", NULL, "Stero2 DAC Power"}, {"DD MIXR", "DAC R1 Switch", "DAC MIXR"}, {"DD MIXR", "DAC R2 Switch", "DAC R2 Volume"}, {"DD MIXR", "DAC L2 Switch", "DAC L2 Volume"}, {"DD MIXR", NULL, "Stero2 DAC Power"}, {"OUT MIXL", "BST1 Switch", "BST1"}, {"OUT MIXL", "BST2 Switch", "BST2"}, {"OUT MIXL", "INL1 Switch", "INL1 VOL"}, {"OUT MIXL", "REC MIXL Switch", "RECMIXL"}, {"OUT MIXL", "DAC L1 Switch", "DAC L1"}, {"OUT MIXR", "BST2 Switch", "BST2"}, {"OUT MIXR", "BST1 Switch", "BST1"}, {"OUT MIXR", "INR1 Switch", "INR1 VOL"}, {"OUT MIXR", "REC MIXR Switch", "RECMIXR"}, {"OUT MIXR", "DAC R1 Switch", "DAC R1"}, {"HPOVOL L", "Switch", "OUT MIXL"}, {"HPOVOL R", "Switch", "OUT MIXR"}, {"OUTVOL L", "Switch", "OUT MIXL"}, {"OUTVOL R", "Switch", "OUT MIXR"}, {"HPOL MIX", "HPO MIX DAC1 Switch", "DAC L1"}, {"HPOL MIX", "HPO MIX HPVOL Switch", "HPOVOL L"}, {"HPOL MIX", NULL, "HP L Amp"}, {"HPOR MIX", "HPO MIX DAC1 Switch", "DAC R1"}, {"HPOR MIX", "HPO MIX HPVOL Switch", "HPOVOL R"}, {"HPOR MIX", NULL, "HP R Amp"}, {"LOUT MIX", "DAC L1 Switch", "DAC L1"}, {"LOUT MIX", "DAC R1 Switch", "DAC R1"}, {"LOUT MIX", "OUTVOL L Switch", "OUTVOL L"}, {"LOUT MIX", "OUTVOL R Switch", "OUTVOL R"}, {"HP Amp", NULL, "HPOL MIX"}, {"HP Amp", NULL, "HPOR MIX"}, {"HP Amp", NULL, "Amp Power"}, {"HPO L Playback", "Switch", "HP Amp"}, {"HPO R Playback", "Switch", "HP Amp"}, {"HPOL", NULL, "HPO L Playback"}, {"HPOR", NULL, "HPO R Playback"}, {"LOUT L Playback", "Switch", "LOUT MIX"}, {"LOUT R Playback", "Switch", "LOUT MIX"}, {"LOUTL", NULL, "LOUT L Playback"}, {"LOUTL", NULL, "Amp Power"}, {"LOUTR", NULL, "LOUT R Playback"}, {"LOUTR", NULL, "Amp Power"}, {"PDML", NULL, "PDM L Mux"}, {"PDMR", NULL, "PDM R Mux"}, };
在rt5651_dapm_widgets中我们可以找到位于多媒体音频播放右声道路径上的route;
{"IF1 DAC", NULL, "AIF1RX"}, {"IF1 DAC1 R", NULL, "IF1 DAC"}, {"DAC MIXR", "INF1 Switch", "IF1 DAC1 R"}, {"Audio DSP", NULL, "DAC MIXR"}, {"Stereo DAC MIXR", "DAC R1 Switch", "Audio DSP"}, {"DAC R1", NULL, "Stereo DAC MIXR"}, {"OUT MIXR", "DAC R1 Switch", "DAC R1"} {"HPOVOL R", "Switch", "OUT MIXR"}, {"HPOR MIX", "HPO MIX HPVOL Switch", "HPOVOL R"}, {"HP Amp", NULL, "HPOR MIX"}, {"HPO R Playback", "Switch", "HP Amp"}, {"HPOR", NULL, "HPO R Playback"},
左声道:
{"IF1 DAC", NULL, "AIF1RX"}, {"IF1 DAC1 L", NULL, "IF1 DAC"}, {"DAC MIXL", "INF1 Switch", "IF1 DAC1 L"}, {"Audio DSP", NULL, "DAC MIXL"}, {"Stereo DAC MIXL", "DAC L1 Switch", "Audio DSP"}, {"DAC L1", NULL, "Stereo DAC MIXL"}, {"OUT MIXL", "DAC L1 Switch", "DAC L1"} {"HPOVOL L", "Switch", "OUT MIXL"}, {"HPOL MIX", "HPO MIX HPVOL Switch", "HPOVOL L"}, {"HP Amp", NULL, "HPOL MIX"}, {"HPO L Playback", "Switch", "HP Amp"}, {"HPOL", NULL, "HPO L Playback"},
三个参数分别为sink、control、source,比如:
{"DAC MIXL", "INF1 Switch", "IF1 DAC1 L"}
输入端的widget名称为IF1 DAC1 L,输出端的widget名称为DAC MIXL,名称为INF1 Switch的kcontrol用于控制这两个widget之间连接的通断(需要注意的是该kcontrol位于输出端的kcontrol中);
// 输入端widget SND_SOC_DAPM_PGA("IF1 DAC1 L", SND_SOC_NOPM, 0, 0, NULL, 0); // 寄存器设置为SND_SOC_NOPM,表示没有寄存器可以控制该widget的上下电 // 输出端widget SND_SOC_DAPM_MIXER("DAC MIXL", SND_SOC_NOPM, 0, 0, // 寄存器设置为SND_SOC_NOPM,表示没有寄存器可以控制该widget的上下电 rt5651_dac_l_mix, ARRAY_SIZE(rt5651_dac_l_mix)); // Left DAC Mixer包含2个kcontrol,每个kcontrol控制着Mixer的一个输入端的开启和关闭 // 输出端widget关联的kcontrol static const struct snd_kcontrol_new rt5651_dac_l_mix[] = { SOC_DAPM_SINGLE("Stereo ADC Switch", RT5651_AD_DA_MIXER, // 寄存器配置为RT5651_AD_DA_MIXER=0x29,偏移位配置为15 RT5651_M_ADCMIX_L_SFT, 1, 1), SOC_DAPM_SINGLE("INF1 Switch", RT5651_AD_DA_MIXER, // 寄存器配置为RT5651_AD_DA_MIXER=0x29,偏移位配置为14 RT5651_M_IF1_DAC_L_SFT, 1, 1), };
4.2 rt5651_probe
rt5651_probe函数在sound/soc/codecs/rt5651.c中定义:
static int rt5651_probe(struct snd_soc_component *component) { struct rt5651_priv *rt5651 = snd_soc_component_get_drvdata(component); // 取出component->dev设备的driver_data,就是上面介绍的rt5651结构变量 rt5651->component = component; // 设置cpmponent snd_soc_component_update_bits(component, RT5651_PWR_ANLG1, // 向寄存器写入值,RT5651_PWR_ANLG1的值为0x63,寄存器地址0x63用于电源控制寄存器3 RT5651_PWR_LDO_DVO_MASK, RT5651_PWR_LDO_DVO_1_2V); // RT5651_PWR_LDO_DVO_MASK值为0x03 RT5651_PWR_LDO_DVO_1_2V值为2 因此这里向位[1:0]写入10'b // 即配置LDO output电压为1.2V snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); // Set the COMPONENT DAPM bias level,即dapm->bias_level=0 rt5651_apply_properties(component); return 0; }
snd_soc_component_update_bits函数定义在sound/soc/soc-component.c, 用于进行i2c控制传输,向i2c从设备指定寄存器地址写入值;

static int snd_soc_component_update_bits_legacy( struct snd_soc_component *component, unsigned int reg, unsigned int mask, unsigned int val, bool *change) // mask描述的是需要更改的位 { unsigned int old, new; int ret = 0; mutex_lock(&component->io_mutex); old = soc_component_read_no_lock(component, reg); // 读取寄存器的值 new = (old & ~mask) | (val & mask); // 计算新的值 *change = old != new; // 判断旧值和新值是否一样 if (*change) // 如果发生改变,则写入新的值 ret = soc_component_write_no_lock(component, reg, new); mutex_unlock(&component->io_mutex); return soc_component_ret_reg_rw(component, ret, reg); } /** * snd_soc_component_update_bits() - Perform read/modify/write cycle * @component: Component to update * @reg: Register to update * @mask: Mask that specifies which bits to update * @val: New value for the bits specified by mask * * Return: 1 if the operation was successful and the value of the register * changed, 0 if the operation was successful, but the value did not change. * Returns a negative error code otherwise. */ int snd_soc_component_update_bits(struct snd_soc_component *component, unsigned int reg, unsigned int mask, unsigned int val) { bool change; int ret; if (component->regmap) // 走这里 // 当前使用regmap,调用regmap接口,其中component->regmap是regmap私有数据 ret = regmap_update_bits_check(component->regmap, reg, mask, val, &change); else ret = snd_soc_component_update_bits_legacy(component, reg, mask, val, &change); if (ret < 0) return soc_component_ret_reg_rw(component, ret, reg); return change; }
4.3 set_bias_level
set_bias_level用于设置codec域的偏置电压,那什么是偏置电压呢?在电容式麦克风中,为了使麦克风的工作点稳定,需要加一个直流电压,这个直流电压就是偏置电压,偏置电压的作用主要有以下几个方面:
- 稳定麦克风的工作点;在没有偏置电压的情况下,麦克风的输出信号会受到温度、湿度等环境因素的影响,导致输出信号的偏移,而偏置电压可以保持麦克风的工作不变,保证输出信号的稳定性;
- 提高麦克风的灵敏度,偏置电压可以使麦克风的灵敏度增加,从而提高声音的捕获能力;
- 降低麦克风的噪声;偏移电压可以降低麦克风的噪声水平,使得麦克风的输出信号更清晰;
对于ALC5651芯片MICBIAS1引脚会输出一个偏置电压,提供给外置麦克风;
set_bias_level函数会被dapm_power_widgets函数调用,这里被设置为了rt5651_set_bias_level。set_bias_level函数在sound/soc/codecs/rt5651.c中定义:
static int rt5651_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { switch (level) { case SND_SOC_BIAS_PREPARE: // 准备状态 // 获取dapm->bias_level,待机->准备 if (SND_SOC_BIAS_STANDBY == snd_soc_component_get_bias_level(component)) { // RT5651_PLL_MODE_1的值为0x83,寄存器0x83为ASRC控制寄存器,这里是判断位[15]、[12]、[9]是否为1 // 其中位[15]为I2S1模式选择控制 0:正常模式 1:ASRC模式 // 位[12]为I2S2模式选择控制 0:正常模式 1:ASRC模式 // 位[9] Select Control for ASRC Mode in DMIC1 Function 0:正常模式 1:ASRC模式 if (snd_soc_component_read(component, RT5651_PLL_MODE_1) & 0x9200) // RT5651_D_MISC的值为0xFA,寄存器地址0xFA为基本控制寄存器 snd_soc_component_update_bits(component, RT5651_D_MISC, 0xc00, 0xc00); // 这里向位[11:10]写入11'b,芯片手册中并没有描述这两位有什么作用 } break; case SND_SOC_BIAS_STANDBY: // 待机状态 // 获取dapm->bias_level,关闭状态->待机状态 if (SND_SOC_BIAS_OFF == snd_soc_component_get_bias_level(component)) { // RT5651_PWR_ANLG1的值为0x63,寄存器地址0x63用于电源控制寄存器3 snd_soc_component_update_bits(component, RT5651_PWR_ANLG1, // RT5651_PWR_VREF1位[15],VREF1 Power Control:0下电、1上电 // RT5651_PWR_MB位[13],MBIAS Power Control:0下电、1上电 // RT5651_PWR_BG位[11],MBIAS Bandgap Power Control:0下电、1上电 // RT5651_PWR_VREF2位[4],VREF2 Power Control:0下电、1上电 RT5651_PWR_VREF1 | RT5651_PWR_MB | RT5651_PWR_BG | RT5651_PWR_VREF2, RT5651_PWR_VREF1 | RT5651_PWR_MB | RT5651_PWR_BG | RT5651_PWR_VREF2); usleep_range(10000, 15000); // RT5651_PWR_FV1位[14],VREF1 Fast Mode Control:0 Fast VREF、1 Slow VREF, (For good analog performance) // RT5651_PWR_FV2位[0],VREF2 Fast Mode Control:0 Fast VREF、1 Slow VREF, (For good analog performance) snd_soc_component_update_bits(component, RT5651_PWR_ANLG1, RT5651_PWR_FV1 | RT5651_PWR_FV2, RT5651_PWR_FV1 | RT5651_PWR_FV2); // RT5651_D_MISC的值为0xFA,寄存器地址0xFA为基本控制寄存器,芯片手册中并没有描述位[1]有什么作用 snd_soc_component_update_bits(component, RT5651_D_MISC, 0x1, 0x1); } break; case SND_SOC_BIAS_OFF: // 关闭状态 snd_soc_component_write(component, RT5651_D_MISC, 0x0010); snd_soc_component_write(component, RT5651_PWR_DIG1, 0x0000); snd_soc_component_write(component, RT5651_PWR_DIG2, 0x0000); snd_soc_component_write(component, RT5651_PWR_VOL, 0x0000); snd_soc_component_write(component, RT5651_PWR_MIXER, 0x0000); /* Do not touch the LDO voltage select bits on bias-off */ snd_soc_component_update_bits(component, RT5651_PWR_ANLG1, ~RT5651_PWR_LDO_DVO_MASK, 0); /* Leave PLL1 and jack-detect power as is, all others off */ snd_soc_component_update_bits(component, RT5651_PWR_ANLG2, ~(RT5651_PWR_PLL | RT5651_PWR_JD_M), 0); break; default: break; } return 0; }
这里寄存器配置有点看不懂,在datasheet中有些寄存器的位描述并没有找到,有兴趣自行研究吧。
4.4 set_jack
set_jack用于设置ACL5651的jack,这里被设置为了rt5651_set_jack,函数在sound/soc/codecs/rt5651.c中定义:
static int rt5651_set_jack(struct snd_soc_component *component, struct snd_soc_jack *jack, void *data) { if (jack) rt5651_enable_jack_detect(component, jack, data); else rt5651_disable_jack_detect(component); return 0; }
在ASoC中使用struct snd_soc_jack来描述jack,并提供了对其状态、引脚等进行管理和通知的功能。这里如何定义了jack,将会调用rt5651_enable_jack_detect,用于实现麦克风插入/拔出的检测。
4.4.1 麦克风检测
我大概说一下ALC5651麦克风插入/拔出的检测原理,ACL5651支持对sta_gpio_jd、、sta_jd1_1、sta_jd1_2、sta_jd2、sta_micbias1_ovcd的的检测(JD英文为jack dection),具体如下:
这里以sta_jd1_1、sta_jd1_2、sta_jd2为例,分别连接ALC5651的JD1、JD2引脚,用于三路麦克风1的检测;
一般情况下,IRQ输出需要与JD功能结合使用。当 JD被触发时,IRQ会向主机输出一个标志,通知软件驱动程序。软件驱动程序将根据系统设计执行相应的操作。以下是流程图:
Jack dection功能可用于打开或关闭相关的输出端口。当插孔检测引脚被触发时,选择的输出端口将打开或关闭。例如,在HP(耳机)和LOUT(扬声器)自动切换功能中,当JD被触发时会进行自动切换。
设置步骤如下:
- 选择JD触发源:将sta_jd1_1作为JD状态。MX-BC[11:9] = 001’b;
- 000’b: From sta_gpio_jd;
- 001’b: From sta_jd1_1;
- 010’b: From sta_jd1_2;
- 011’b: From sta_jd2;
- Others: Reserved;
- 根据JD的激活状态设置目标行为:当JD被触发时,进行HP和LOUT的自动切换。 MX-BB[11:10] = 11’b & MX-BB[3:2] = 10’b;
- 位[11]:Enable Jack Detect Trigger HPOUT,0:禁止,1:使能;
- 位[10]:Select Jack Detect Polarity Trigger HPOUT,0:低电平触发,1:高平触发;
- 位[3]:Enable Jack Detect Trigger LOUT,0:禁止,1:使能;
- 位[2]:Select Jack Detect Polarity Trigger LOUT:0:低电平触发,1:高平触发;
- 当JD状态为低电平时,HP_OUT(耳机输出)将静音,LOUT(扬声器输出)将恢复正常声音。 当JD状态由低电平变为高电平时,HP将恢复正常声音,LOUT将静音。
注意:对于HP和SPK插孔切换功能,驱动程序需要先打开DAC通往HP路径的通路和DAC通往LOUT路径的通路。MX-BB的寄存器控制仅用于对HP和SPK进行静音/取消静音功能。
当我们移植完了声卡驱动,并通过开发板ubuntu系统进行音频播放的时候,我特意查看了一下0xBB、0xBC寄存器的值:
- 0xBB:Jack Dection控制寄存器1,值为0x00;
- 0xBC:Jack Dection控制寄存器2,值为0x00.
4.4.2 rt5651_enable_jack_detect
函数rt5651_enable_jack_detect定义如下,这里我们就不分析了:
static void rt5651_enable_jack_detect(struct snd_soc_component *component, struct snd_soc_jack *hp_jack, struct gpio_desc *gpiod_hp_det) { struct rt5651_priv *rt5651 = snd_soc_component_get_drvdata(component); bool using_internal_jack_detect = true; /* Select jack detect source */ switch (rt5651->jd_src) { case RT5651_JD_NULL: rt5651->gpiod_hp_det = gpiod_hp_det; if (!rt5651->gpiod_hp_det) return; /* No jack detect */ using_internal_jack_detect = false; break; case RT5651_JD1_1: snd_soc_component_update_bits(component, RT5651_JD_CTRL2, // RT5651_JD_CTRL2值为0xBC RT5651_JD_TRG_SEL_MASK, RT5651_JD_TRG_SEL_JD1_1); /* active-low is normal, set inv flag for active-high */ if (rt5651->jd_active_high) snd_soc_component_update_bits(component, RT5651_IRQ_CTRL1, // RT5651_JD_CTRL1值为0xBB RT5651_JD1_1_IRQ_EN | RT5651_JD1_1_INV, RT5651_JD1_1_IRQ_EN | RT5651_JD1_1_INV); else snd_soc_component_update_bits(component, RT5651_IRQ_CTRL1, RT5651_JD1_1_IRQ_EN | RT5651_JD1_1_INV, RT5651_JD1_1_IRQ_EN); break; case RT5651_JD1_2: snd_soc_component_update_bits(component, RT5651_JD_CTRL2, RT5651_JD_TRG_SEL_MASK, RT5651_JD_TRG_SEL_JD1_2); /* active-low is normal, set inv flag for active-high */ if (rt5651->jd_active_high) snd_soc_component_update_bits(component, RT5651_IRQ_CTRL1, RT5651_JD1_2_IRQ_EN | RT5651_JD1_2_INV, RT5651_JD1_2_IRQ_EN | RT5651_JD1_2_INV); else snd_soc_component_update_bits(component, RT5651_IRQ_CTRL1, RT5651_JD1_2_IRQ_EN | RT5651_JD1_2_INV, RT5651_JD1_2_IRQ_EN); break; case RT5651_JD2: snd_soc_component_update_bits(component, RT5651_JD_CTRL2, RT5651_JD_TRG_SEL_MASK, RT5651_JD_TRG_SEL_JD2); /* active-low is normal, set inv flag for active-high */ if (rt5651->jd_active_high) snd_soc_component_update_bits(component, RT5651_IRQ_CTRL1, RT5651_JD2_IRQ_EN | RT5651_JD2_INV, RT5651_JD2_IRQ_EN | RT5651_JD2_INV); else snd_soc_component_update_bits(component, RT5651_IRQ_CTRL1, RT5651_JD2_IRQ_EN | RT5651_JD2_INV, RT5651_JD2_IRQ_EN); break; default: dev_err(component->dev, "Currently only JD1_1 / JD1_2 / JD2 are supported\n"); return; } if (using_internal_jack_detect) { /* IRQ output on GPIO1 */ snd_soc_component_update_bits(component, RT5651_GPIO_CTRL1, RT5651_GP1_PIN_MASK, RT5651_GP1_PIN_IRQ); /* Enable jack detect power */ snd_soc_component_update_bits(component, RT5651_PWR_ANLG2, RT5651_PWR_JD_M, RT5651_PWR_JD_M); } /* Set OVCD threshold current and scale-factor */ snd_soc_component_write(component, RT5651_PR_BASE + RT5651_BIAS_CUR4, 0xa800 | rt5651->ovcd_sf); snd_soc_component_update_bits(component, RT5651_MICBIAS, RT5651_MIC1_OVCD_MASK | RT5651_MIC1_OVTH_MASK | RT5651_PWR_CLK12M_MASK | RT5651_PWR_MB_MASK, RT5651_MIC1_OVCD_EN | rt5651->ovcd_th | RT5651_PWR_MB_PU | RT5651_PWR_CLK12M_PU); /* * The over-current-detect is only reliable in detecting the absence * of over-current, when the mic-contact in the jack is short-circuited, * the hardware periodically retries if it can apply the bias-current * leading to the ovcd status flip-flopping 1-0-1 with it being 0 about * 10% of the time, as we poll the ovcd status bit we might hit that * 10%, so we enable sticky mode and when checking OVCD we clear the * status, msleep() a bit and then check to get a reliable reading. */ snd_soc_component_update_bits(component, RT5651_IRQ_CTRL2, RT5651_MB1_OC_STKY_MASK, RT5651_MB1_OC_STKY_EN); rt5651->hp_jack = hp_jack; if (rt5651_support_button_press(rt5651)) { rt5651_enable_micbias1_for_ovcd(component); rt5651_enable_micbias1_ovcd_irq(component); } enable_irq(rt5651->irq); // 使能中断,在设备树中我们并没有配置该项,如果配置了可以用来检测检测麦克风的插入/拔出 /* sync initial jack state */ queue_work(system_power_efficient_wq, &rt5651->jack_detect_work); }
五、rt5651_dai
由于ALC5651有两组I2S接口,可以同时用于耳机输出以及Line output;RK3399与ALC5651连线如下:
**************** *********** * * * <------ * <---- MIC RAM <--------PCM-> * <----------> * <-I2S------------I2S1-> * * * * | * ------> * ----> Line output **************** | * * RK3399 | * * -----I2S2-> * ------> * ----> HEADPHONE *********** ALC5651
codec dai和pcm配置信息通过结构体snd_soc_dai_driver描述,包括了dai的能力描述和操作接口;devm_snd_soc_register_component函数第三个参数为rt5651_dai,数组中长度为2,分别与ALC5651的两组I2S接口一一对应;
static struct snd_soc_dai_driver rt5651_dai[] = { { .name = "rt5651-aif1", // dai的名称,会赋值给与其关联的snd_soc_dai的name成员
// 音频数据链路是通过dai_name到ALC5651的component的dai_list链表中来查找dai的
.id = RT5651_AIF1, // 0,dai的id .playback = { // 声卡注册的时候会为其创建一个类型为snd_soc_dapm_dai_in的playback dai widget,其name以及sname均设置为"AIF1 Playback" .stream_name = "AIF1 Playback", .channels_min = 1, // 最小通道数 .channels_max = 2, // 最大通道数 .rates = RT5651_STEREO_RATES, .formats = RT5651_FORMATS, }, .capture = { // 声卡注册的时候会为其创建一个类型为snd_soc_dapm_dai_out的capture dai widget,其name以及sname均设置为"AIF1 Capture" .stream_name = "AIF1 Capture", .channels_min = 1, .channels_max = 2, .rates = RT5651_STEREO_RATES, // 支持的采样率 SNDRV_PCM_RATE_8000_96000 999~96000之间 .formats = RT5651_FORMATS, // 支持的位深度 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S8) }, .ops = &rt5651_aif_dai_ops, }, { .name = "rt5651-aif2", .id = RT5651_AIF2, // 1,dai的id .playback = { .stream_name = "AIF2 Playback", .channels_min = 1, .channels_max = 2, .rates = RT5651_STEREO_RATES, .formats = RT5651_FORMATS, }, .capture = { .stream_name = "AIF2 Capture", .channels_min = 1, .channels_max = 2, .rates = RT5651_STEREO_RATES, .formats = RT5651_FORMATS, }, .ops = &rt5651_aif_dai_ops, }, };
其中:
- name:codec dai的名称标识,dai_link通过配置codec dai_name来找到对应的codec dai;
- capture:描述capture的能力;如回放设备所支持的声道数、采样率、音频格式;非常重要的字段;
- playback:描述playback的能力;如录制设备所支持声道数、采样率、音频格式;非常重要的字段;
- ops:codec dai的操作函数集,这些函数集非常重要,用于dai的时钟配置、格式配置、硬件参数配置。
在注册ASoC声卡的时候,会调用soc_probe_link_components,每一个dai创建两个音频数据流的widget,以名字为 rt5651-aif1的dai为例:
- 一个是类型为snd_soc_dapm_dai_in名称为AIF1 Playback的播放流widget;
- 另一个是类型为snd_soc_dapm_dai_out名称为AIF1 Capture的录音流widget;
同时也会为构造以播放流widget作为输入端的路径,其连接sname为"AIF1 Playback"的widget;在rt5651_dapm_widgets数组中可以定位名字为AIF1RX的widge其sname与之匹配;
亲爱的读者和支持者们,自动博客加入了打赏功能,陆陆续续收到了各位老铁的打赏。在此,我想由衷地感谢每一位对我们博客的支持和打赏。你们的慷慨与支持,是我们前行的动力与源泉。
日期 | 姓名 | 金额 |
---|---|---|
2023-09-06 | *源 | 19 |
2023-09-11 | *朝科 | 88 |
2023-09-21 | *号 | 5 |
2023-09-16 | *真 | 60 |
2023-10-26 | *通 | 9.9 |
2023-11-04 | *慎 | 0.66 |
2023-11-24 | *恩 | 0.01 |
2023-12-30 | I*B | 1 |
2024-01-28 | *兴 | 20 |
2024-02-01 | QYing | 20 |
2024-02-11 | *督 | 6 |
2024-02-18 | 一*x | 1 |
2024-02-20 | c*l | 18.88 |
2024-01-01 | *I | 5 |
2024-04-08 | *程 | 150 |
2024-04-18 | *超 | 20 |
2024-04-26 | .*V | 30 |
2024-05-08 | D*W | 5 |
2024-05-29 | *辉 | 20 |
2024-05-30 | *雄 | 10 |
2024-06-08 | *: | 10 |
2024-06-23 | 小狮子 | 666 |
2024-06-28 | *s | 6.66 |
2024-06-29 | *炼 | 1 |
2024-06-30 | *! | 1 |
2024-07-08 | *方 | 20 |
2024-07-18 | A*1 | 6.66 |
2024-07-31 | *北 | 12 |
2024-08-13 | *基 | 1 |
2024-08-23 | n*s | 2 |
2024-09-02 | *源 | 50 |
2024-09-04 | *J | 2 |
2024-09-06 | *强 | 8.8 |
2024-09-09 | *波 | 1 |
2024-09-10 | *口 | 1 |
2024-09-10 | *波 | 1 |
2024-09-12 | *波 | 10 |
2024-09-18 | *明 | 1.68 |
2024-09-26 | B*h | 10 |
2024-09-30 | 岁 | 10 |
2024-10-02 | M*i | 1 |
2024-10-14 | *朋 | 10 |
2024-10-22 | *海 | 10 |
2024-10-23 | *南 | 10 |
2024-10-26 | *节 | 6.66 |
2024-10-27 | *o | 5 |
2024-10-28 | W*F | 6.66 |
2024-10-29 | R*n | 6.66 |
2024-11-02 | *球 | 6 |
2024-11-021 | *鑫 | 6.66 |
2024-11-25 | *沙 | 5 |
2024-11-29 | C*n | 2.88 |

【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2018-07-30 第八节、图片分割之GrabCut算法、分水岭算法