08 递归:如何用三行代码找到“最终推荐人”
一、什么是递归?
1.递归是一种非常高效、简洁的编码技巧,比如DFS深度优先搜索、前中后序二叉树遍历等都是使用递归。
2.方法或函数调用自身的方式称为递归调用,调用称为“递”,返回称为“归”。
3.基本上,所有的递归问题都可以用递推公式来表示,比如:
f(n) = f(n-1) + 1;
f(n) = f(n-1) + f(n-2);
f(n) = n * f(n-1);
二、为什么使用递归?递归的优缺点?
1.优点:代码的表达力很强,写起来简洁。
2.缺点:空间复杂度高、有堆栈溢出风险,存在重复计算、过多的函数调用耗时较多等问题。
三、什么样的问题可以用递归来解决呢?
一个问题只要同时满足以下3个条件,就可以用递归来解决:
1.问题的解可以分解为几个子问题的解。何为子问题?就是数据规模更小的问题。
2.问题与子问题,除了数据规模不同,求解思路完全一样。
3.存在递归终止条件。
四、如何实现递归?
1.递归代码编写
写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译为代码。
2.递归代码理解
对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。
那该如何理解递归代码呢?如果一个问题A可以分解为若干个子问题B、C、D,你可以假设子问题B、C、D已经解决。而且,你只需要思考问题A与子问题B、C、D两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样理解起来就简单多了。
因此,理解递归代码,就把它抽象成一个递归公式,不用想一层层的调用关系,不要想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
五、递归常见问题及解决方案
1.警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
2.警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。
六、如何将递归改写为非递归代码?
笼统的讲,所有的递归代码都可以改写为迭代循环的非递归代码。如何做?抽象出递推公式、初始值和边界条件,然后迭代循环实现。