BZOJ3105: [cqoi2013]新Nim游戏
题解:
线性基?类似于向量上的基底。
此题题解戳这里:http://blog.csdn.net/wyfcyx_forever/article/details/39477673
代码:
1 #include<cstdio> 2 #include<cstdlib> 3 #include<cmath> 4 #include<cstring> 5 #include<algorithm> 6 #include<iostream> 7 #include<vector> 8 #include<map> 9 #include<set> 10 #include<queue> 11 #include<string> 12 #define inf 1000000000 13 #define maxn 100+5 14 #define maxm 100000+5 15 #define eps 1e-10 16 #define ll long long 17 #define pa pair<int,int> 18 #define for0(i,n) for(int i=0;i<=(n);i++) 19 #define for1(i,n) for(int i=1;i<=(n);i++) 20 #define for2(i,x,y) for(int i=(x);i<=(y);i++) 21 #define for3(i,x,y) for(int i=(x);i>=(y);i--) 22 #define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go) 23 #define mod 1000000007 24 using namespace std; 25 inline int read() 26 { 27 int x=0,f=1;char ch=getchar(); 28 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} 29 while(ch>='0'&&ch<='9'){x=10*x+ch-'0';ch=getchar();} 30 return x*f; 31 } 32 int n,a[maxn],b[maxn]; 33 ll sum,ans; 34 int main() 35 { 36 freopen("input.txt","r",stdin); 37 freopen("output.txt","w",stdout); 38 n=read(); 39 for1(i,n)a[i]=read(),sum+=(ll)a[i]; 40 sort(a+1,a+n+1); 41 for3(i,n,1) 42 { 43 int t=a[i]; 44 for3(j,30,0) 45 if(a[i]>>j&1) 46 { 47 if(b[j])a[i]^=b[j]; 48 else {b[j]=a[i];break;} 49 } 50 if(a[i])ans+=(ll)t; 51 } 52 cout<<sum-ans<<endl; 53 return 0; 54 }
动态维护线性基的方法真是orz了。
3105: [cqoi2013]新Nim游戏
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 396 Solved: 239
[Submit][Status]
Description
传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。
Input
第一行为整数k。即火柴堆数。第二行包含k个不超过109的正整数,即各堆的火柴个数。
Output
输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。
Sample Input
6
5 5 6 6 5 5
5 5 6 6 5 5
Sample Output
21
HINT
k<=100