BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛
3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 30 Solved: 17
[Submit][Status]
Description
约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K(O≤K<N)只牝牛.
请计算一共有多少种排队的方法.所有牡牛可以看成是相同的,所有牝牛也一样.
Input
一行,输入两个整数N和K.
Output
一个整数,表示排队的方法数.
Sample Input
4 2
Sample Output
6
样例说明
6种方法分别是:牝牝牝牝,牡牝牝牝,牝牡牝牝,牝牝牡牝,牝牝牝牡,牡牝牝牡
样例说明
6种方法分别是:牝牝牝牝,牡牝牝牝,牝牡牝牝,牝牝牡牝,牝牝牝牡,牡牝牝牡
HINT
Source
题解:
问题可以转化为 在n个数中去若干个数,使这些数两两的差都>k
刚开始想的是排列组合:
枚举取m个,
设取出的m个数为 a[1] a[2] a[3] a[...] a[m]
构造数列 a[1] a[2]-k a[3]-2*k a[...]-...k a[m]-(m-1)*k
则该数列 严格递增 且该数列的个数为 c(a[m]-(m-1)*k,m)
因为每不同取法从小到大排序之后还原上去可以得到不同的 a数组
然后就可以各种逆元+排列组合乱搞了
复杂度 n*logn
后来发现直接DP(递推)更简单?
设 f[i]表示取的最后一个数是i的方案数
则 f[i]=siama(f[j]) i-j>k
so easy!
看来有时候数学方法不一定比信息学方法好233333
代码:
1 #include<cstdio> 2 #include<cstdlib> 3 #include<cmath> 4 #include<cstring> 5 #include<algorithm> 6 #include<iostream> 7 #include<vector> 8 #include<map> 9 #include<set> 10 #include<queue> 11 #include<string> 12 #define inf 1000000000 13 #define maxn 100000+5 14 #define maxm 500+100 15 #define eps 1e-10 16 #define ll long long 17 #define pa pair<int,int> 18 #define for0(i,n) for(int i=0;i<=(n);i++) 19 #define for1(i,n) for(int i=1;i<=(n);i++) 20 #define for2(i,x,y) for(int i=(x);i<=(y);i++) 21 #define for3(i,x,y) for(int i=(x);i>=(y);i--) 22 #define mod 5000011 23 using namespace std; 24 inline int read() 25 { 26 int x=0,f=1;char ch=getchar(); 27 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} 28 while(ch>='0'&&ch<='9'){x=10*x+ch-'0';ch=getchar();} 29 return x*f; 30 } 31 int n,k,f[maxn]; 32 int main() 33 { 34 freopen("input.txt","r",stdin); 35 freopen("output.txt","w",stdout); 36 n=read();k=read(); 37 f[0]=1; 38 int sum=1,ans=1; 39 for1(i,n) 40 { 41 if(i>k+1)sum=(sum+f[i-k-1])%mod; 42 f[i]=sum; 43 ans=(ans+f[i])%mod; 44 } 45 printf("%d\n",ans); 46 return 0; 47 }