T-shirt
题目描述
JSZKC is going to spend his vacation!
His vacation has N days. Each day, he can choose a T-shirt to wear. Obviously, he doesn’t want to wear a singer color T-shirt since others will consider he has worn one T-shirt all the time.
To avoid this problem, he has M different T-shirt with different color. If he wears A color T-shirt this day and B color T-shirt the next day, then he will get the pleasure of f[A][B].(notice: He is able to wear one T-shirt in two continuous days but may get a low pleasure)
Please calculate the max pleasure he can get.
His vacation has N days. Each day, he can choose a T-shirt to wear. Obviously, he doesn’t want to wear a singer color T-shirt since others will consider he has worn one T-shirt all the time.
To avoid this problem, he has M different T-shirt with different color. If he wears A color T-shirt this day and B color T-shirt the next day, then he will get the pleasure of f[A][B].(notice: He is able to wear one T-shirt in two continuous days but may get a low pleasure)
Please calculate the max pleasure he can get.
输入
The input file contains several test cases, each of them as described below.
- The first line of the input contains two integers N,M (2 ≤ N≤ 100000, 1 ≤ M≤ 100), giving the length of vacation and the T-shirts that JSZKC has.
- The next follows M lines with each line M integers. The jth integer in the ith line means f[i][j](1<=f[i][j]<=1000000).
输出
One line per case, an integer indicates the answer
样例输入
3 2
0 1
1 0
4 3
1 2 3
1 2 3
1 2 3
样例输出
2 9
感觉蛮难的一道题,学长给我讲了还迷迷糊糊的,看了半小时才明白。
这题用的东西蛮多的,首先用了倍增的思想,f[i][j][k]表示走2^i次,从j->k的最大价值。也就是压缩了一下状态。
然后用了二进制的思想,把n分解成x1*2^p1+x2*2^p2+x3*2^p3.....xn*2^pn。 然后看能不能xi是否等于0,如果等于,可以走。 就进入递推,这样保证了一定走了n-1次。
然后用了一个状态压缩,因为每一步只和上一步有关,所以i只需要在0与1之间变化。
#include <bits/stdc++.h> #define maxn 105 using namespace std; typedef long long ll; ll f[25][maxn][maxn]={0}; ll ans[2][maxn][maxn]={0}; int main() { int n,m,i,j,k,l; while(~scanf("%d%d",&n,&m)) { memset(f,0,sizeof(f)); memset(ans,0,sizeof(ans)); for(i=1;i<=m;i++) { for(j=1;j<=m;j++) { scanf("%lld",&f[0][i][j]); } } for(i=1;i<=20;i++) { for(j=1;j<=m;j++) { for(k=1;k<=m;k++) { for(l=1;l<=m;l++) { f[i][j][k]=max(f[i][j][k],f[i-1][j][l]+f[i-1][l][k]); } } } } n--; int temp=1; for(i=0;i<=20;i++) { if(n&(1<<i)) { for(j=1;j<=m;j++) { for(k=1;k<=m;k++) { for(l=1;l<=m;l++) { ans[temp][j][k]=max(ans[temp][j][k],ans[1-temp][j][l]+f[i][l][k]); } } } temp=1-temp; } } temp=1-temp; ll maxim=0; for(i=1;i<=m;i++) { for(j=1;j<=m;j++) { maxim=max(ans[temp][i][j],maxim); } } cout<<maxim<<endl; } return 0; }