线段树模板2
题目描述
如题,已知一个数列,你需要进行下面三种操作:
-
将某区间每一个数乘上 xx
-
将某区间每一个数加上 xx
-
求出某区间每一个数的和
输入格式
第一行包含三个整数 n,m,pn,m,p,分别表示该数列数字的个数、操作的总个数和模数。
第二行包含 nn 个用空格分隔的整数,其中第 ii 个数字表示数列第 ii 项的初始值。
接下来 mm 行每行包含若干个整数,表示一个操作,具体如下:
操作 11: 格式:1 x y k
含义:将区间 [x,y][x,y] 内每个数乘上 kk
操作 22: 格式:2 x y k
含义:将区间 [x,y][x,y] 内每个数加上 kk
操作 33: 格式:3 x y
含义:输出区间 [x,y][x,y] 内每个数的和对 pp 取模所得的结果
输出格式
输出包含若干行整数,即为所有操作 33 的结果。
输入输出样例
输入 #1复制
5 5 38 1 5 4 2 3 2 1 4 1 3 2 5 1 2 4 2 2 3 5 5 3 1 4
输出 #1复制
17 2
说明/提示
【数据范围】
对于 30\%30% 的数据:n \le 8n≤8,m \le 10m≤10
对于 70\%70% 的数据:n \le 10^3n≤103,m \le 10^4m≤104
对于 100\%100% 的数据:n \le 10^5n≤105,m \le 10^5m≤105
除样例外,p = 571373p=571373
(数据已经过加强^_^)
样例说明:
故输出应为 1717、22( 40 \bmod 38 = 240mod38=2 )
转载于:题解 P3373 【【模板】线段树 2】 - lqhsr 的博客 - 洛谷博客(里面有具体解释)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int n,m,a[1000005],mod;
struct node{
ll sum,l,r,mu,add;
}t[1000005];
ll read(){
ll x=0;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9')x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
void build(ll p,ll l,ll r){
t[p].l=l,t[p].r=r;t[p].mu=1;
if(l==r){
t[p].sum=a[l]%mod;
return;
}
ll mid=(l+r)>>1;
build(p*2,l,mid);
build(p*2+1,mid+1,r);
t[p].sum=(t[p*2].sum+t[p*2+1].sum)%mod;
}
void spread(ll p){
t[p*2].sum=(ll)(t[p].mu*t[p*2].sum+((t[p*2].r-t[p*2].l+1)*t[p].add)%mod)%mod;
t[p*2+1].sum=(ll)(t[p].mu*t[p*2+1].sum+(t[p].add*(t[p*2+1].r-t[p*2+1].l+1))%mod)%mod;//add已经乘过mu啦
t[p*2].mu=(ll)(t[p*2].mu*t[p].mu)%mod;
t[p*2+1].mu=(ll)(t[p*2+1].mu*t[p].mu)%mod;
t[p*2].add=(ll)(t[p*2].add*t[p].mu+t[p].add)%mod;
t[p*2+1].add=(ll)(t[p*2+1].add*t[p].mu+t[p].add)%mod;
t[p].mu=1,t[p].add=0;
}
void add(ll p,ll l,ll r,ll k){
if(t[p].l>=l&&t[p].r<=r){
t[p].add=(t[p].add+k)%mod;
t[p].sum=(ll)(t[p].sum+k*(t[p].r-t[p].l+1))%mod;//只要加上增加的就好
return;
}
spread(p);
ll mid=(t[p].l+t[p].r)>>1;
if(l<=mid)add(p*2,l,r,k);
if(mid<r)add(p*2+1,l,r,k);
t[p].sum=(t[p*2].sum+t[p*2+1].sum)%mod;
}
void mu(ll p,ll l,ll r,ll k){
if(t[p].l>=l&&t[p].r<=r){
t[p].add=(t[p].add*k)%mod;//比较重要的一步,add要在这里乘上k,因为后面可能要加其他的数而那些数其实是不用乘k的
t[p].mu=(t[p].mu*k)%mod;
t[p].sum=(t[p].sum*k)%mod;
return ;
}
spread(p);
ll mid=(t[p].l+t[p].r)>>1;
if(l<=mid)mu(p*2,l,r,k);
if(mid<r)mu(p*2+1,l,r,k);
t[p].sum=(t[p*2].sum+t[p*2+1].sum)%mod;
}
ll ask(ll p,ll l,ll r){
if(t[p].l>=l&&t[p].r<=r){
return t[p].sum;
}
spread(p);
ll val=0;
ll mid=(t[p].l+t[p].r)>>1;
if(l<=mid)val=(val+ask(p*2,l,r))%mod;
if(mid<r)val=(val+ask(p*2+1,l,r))%mod;
return val;
}
int main(){
cin>>n>>m>>mod;
for(int i=1;i<=n;i++){
a[i]=read();
}
build(1,1,n);
for(int i=1;i<=m;i++){
int ty=read();
if(ty==1){
ll cn=read(),cm=read(),cw=read();
mu(1,cn,cm,cw);
}else if(ty==2){
ll cn=read(),cm=read(),cw=read();
add(1,cn,cm,cw);
}else {
ll cn=read(),cm=read();
cout<<ask(1,cn,cm)<<endl;
}
}
}