【计算几何初步-线段相交+并查集】【HDU1558】Segment set
Segment set
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3548 Accepted Submission(s): 1324
Problem Description
A segment and all segments which are connected with it compose a segment set. The size of a segment set is the number of segments in it. The problem is to find the size of some segment set.
Input
In the first line there is an integer t - the number of test case. For each test case in first line there is an integer n (n<=1000) - the number of commands.
There are two different commands described in different format shown below:
P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of the segment set which contains the k-th segment.
k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command.
There are two different commands described in different format shown below:
P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2).
Q k - query the size of the segment set which contains the k-th segment.
k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command.
Output
For each Q-command, output the answer. There is a blank line between test cases.
Sample Input
1 10 P 1.00 1.00 4.00 2.00 P 1.00 -2.00 8.00 4.00 Q 1 P 2.00 3.00 3.00 1.00 Q 1 Q 3 P 1.00 4.00 8.00 2.00 Q 2 P 3.00 3.00 6.00 -2.00 Q 5
Sample Output
1 2 2 2 5
Author
LL
主要可能会直线重叠的情况,此时也算相交
所以若叉积为0 点积也为0时也算相交
代码如下:
#include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #include <ctime> #include <algorithm> #include <iostream> #include <sstream> #include <string> #define oo 0x13131313 #define exp 0.000001 using namespace std; int N,tot; struct point { double x,y; }; point S[10110],E[10011]; int Set[10110]; int ANS[10110]; int sgn(double x) { if(fabs(x)<exp) return 0; else if(x<0) return -1; else return 1; } double dotdet(double x1,double y1,double x2,double y2) { return x1*x2+y1*y2; } double dot(point a,point b,point c) { return dotdet(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y); } double crossdet(double x1,double y1,double x2,double y2) { return x1*y2-x2*y1; } double cross(point a,point b,point c) { return crossdet(b.x-a.x,b.y-a.y,c.x-a.x,c.y-a.y); } double pan(point s1,point e1,point s2,point e2) { //跨立实验 double a1=cross(s1,e1,s2); //s1-e1 s2 double a2=cross(s1,e1,e2); double a3=cross(s2,e2,s1); double a4=cross(s2,e2,e1); if(sgn(a1*a2)<0&&sgn(a3*a4)<0) return 1; if((a1==0&&sgn(dot(s2,s1,e1))<=0)|| (a2==0&&sgn(dot(e2,s1,e1))<=0)|| (a3==0&&sgn(dot(s1,s2,e2))<=0)|| (a4==0&&sgn(dot(e1,s2,e2))<=0)) return 1; return 0; } void CSH() { for(int i=0;i<=10001;i++) { Set[i]=i; ANS[i]=1; } tot=0; } int find(int x) { if(x!=Set[x]) Set[x]=find(Set[x]); return Set[x]; } void UNION(int a,int b) { int a1=find(a); int a2=find(b); if(a1!=a2) { ANS[a1]+=ANS[a2]; Set[a2]=a1; } } void input() { char ch;int temp; CSH(); cin>>N; getchar(); for(int i=1;i<=N;i++) { scanf("%c",&ch); if(ch=='P') { tot++; scanf("%lf%lf%lf%lf\n",&S[tot].x,&S[tot].y,&E[tot].x,&E[tot].y); for(int i=1;i<tot;i++) { if(pan(S[i],E[i],S[tot],E[tot])==1) { UNION(i,tot); } } } else if(ch=='Q') { scanf("%d\n",&temp); cout<<ANS[find(temp)]<<endl; } } } void init() { freopen("a.in","r",stdin); freopen("a.out","w",stdout); } int main() { int T; // init(); cin>>T; int nn=0; while(T--) { if(nn++) cout<<endl; input(); } return 0; }