Loading

刷题笔记 -宽搜bfs和深搜dfs

bfs

宽搜的一般格式:
1.定义一个判重数组st
2.队列初始化
3.while(queue非空)

  • 从队首取出元素
  • 扩展与取出元素相连且符合条件的元素,加入队列
    4.可以使用C++提供的队列,但是定义结构体数组模拟队列也不复杂。

献给阿尔吉侬的花束

代码1-使用queue:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>

using namespace std;
#define x first
#define y second
typedef pair<int ,int> PII;
const int N = 210;

int r,c;
char maz[N][N];
int cnt[N][N];
bool st[N][N];


int bfs(PII start , PII end)
{
    queue<PII> q;
    int d[4] = {0 , 0, 1 ,-1} , f[4] = {1 , -1 , 0 , 0}; 
    memset(cnt , 0 ,sizeof cnt);
    memset(st , 0 , sizeof st);
    q.push(start);   st[start.x][start.y] = true;
    while(q.size())
    {
        PII t = q.front();
        q.pop();
       
        for(int i = 0 ; i < 4; i++)
        {
             int x = t.x + d[i], y = t.y + f[i];
             //边界判断
             if(x < 0 || x >= r || y < 0 || y >= c)   continue;
             //如果已经访问或者是墙
             if(st[x][y] || maz[x][y] == '#')    continue;
             
             cnt[x][y] = cnt[t.x][t.y] + 1;
             st[x][y] = true;
             if(x == end.x && y == end.y)   return cnt[x][y];
             q.push({x,y});
        }
    }
    return -1;
}

int main(void)
{
    int t;
    cin >> t;
    PII start, end;
    
    while(t--)
    {
        cin >> r >> c;
        for(int i = 0; i < r; i++)  scanf("%s" ,maz[i]);
        
        for(int i = 0; i < r; i++)
            for(int j = 0; j < c; j++)
                if(maz[i][j] == 'E')   start = {i , j};
                else if(maz[i][j] == 'S') end = {i , j};
        
        int ans = bfs(start , end);
        if(ans != -1)   printf("%d\n",ans);
        else    printf("oop!\n");
    }
}

代码2 -模拟队列

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;
#define x first
#define y second
typedef pair<int ,int> PII;
const int N = 210;

int r,c;
char maz[N][N];
int cnt[N][N];
bool st[N][N];


int bfs(PII start , PII end)
{
    //如果不每一次重新定义queue,那么上一次的会残留
    PII q[r * c];
    int d[4] = {0 , 0, 1 ,-1} , f[4] = {1 , -1 , 0 , 0}; 
    memset(cnt , 0 ,sizeof cnt);
    memset(st , 0 , sizeof st);
    int hh = 0,tt = 0;
    q[hh] = start;
    st[start.x][start.y] = true;
    
    while(hh <= tt)
    {
        //pop的返回值是void ,所以需要使用front
        PII t = q[hh++];
       
        for(int i = 0 ; i < 4; i++)
        {
             int x = t.x + d[i], y = t.y + f[i];
             //边界检查
             if(x < 0 || x >= r || y < 0 || y >= c)   continue;
             //是否已经访问,是否为墙
             if(st[x][y] || maz[x][y] == '#')    continue;
             
             
             cnt[x][y] = cnt[t.x][t.y] + 1;
             st[x][y] = true;
             if(x == end.x && y == end.y)   return cnt[x][y];
             q[++tt] = {x, y};
        }
    }
    return -1;
}

int main(void)
{
    int t;
    cin >> t;
    PII start, end;
    
    while(t--)
    {
        cin >> r >> c;
        for(int i = 0; i < r; i++)  scanf("%s" ,maz[i]);
        
        for(int i = 0; i < r; i++)
            for(int j = 0; j < c; j++)
                if(maz[i][j] == 'E')   start = {i , j};
                else if(maz[i][j] == 'S') end = {i , j};
        
        int ans = bfs(start , end);
        if(ans != -1)   printf("%d\n",ans);
        else    printf("oop!\n");
    }
}

dfs

1.一般来说,深搜能求出一个解,而宽搜会遍历所有的解。例如在求最短路径时用宽搜比较好(深搜也可以但是麻烦)
2.宽搜不会爆栈,但深搜可能会,但是深搜的代码相对简单
3.深搜是否进行现场恢复对应两种模型:
- 恢复:棋盘
- 不恢复:迷宫

全球变暖

代码1 -dfs

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;
const int N = 1010;

int d[4] = {-1 , 0 , 1 , 0} , f[4] = {0 , 1 , 0 , -1};
char g[N][N];
bool st[N][N];
int n;
int ch;
void dfs(int x ,int y)
{
    g[x][y] = '!';
    bool is = true;
    for(int i = 0 ; i < 4; i++)
    {
        int a = x + d[i] , b = y + f[i];
        if(a < 0 || a >= n || b < 0 || b >= n)  continue;
        if(g[a][b] == '.')      is = false;
        if(g[a][b] == '#')      dfs(a , b);
    }
    if(is)   ch = 1;
}

int main(void)
{
    cin >> n;
    
    for(int i = 0; i < n; i++)    scanf("%s" , g[i]);
    
    bool is;
    int cnt = 0;
    for(int i = 0; i < n ; i++)
        for(int j = 0; j < n; j++)
            if(g[i][j] == '#')
            {
                    dfs(i , j);
                    if(!ch) cnt++;
                    ch = 0;
            }
    cout << cnt << endl;
    
    return 0;
}

代码2 -bfs

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 1010;

int n;
char g[N][N];
bool st[N][N];
PII q[N * N];
int dx[4] = {-1, 0, 1, 0};
int dy[4] = {0, 1, 0, -1};

void bfs(int sx, int sy, int &total, int &bound)
{
    int hh = 0, tt = 0;
    q[0] = {sx, sy};
    st[sx][sy] = true;

    while (hh <= tt)
    {
        PII t = q[hh ++ ];

        total ++ ;
        bool is_bound = false;
        for (int i = 0; i < 4; i ++ )
        {
            int x = t.x + dx[i], y = t.y + dy[i];
            if (x < 0 || x >= n || y < 0 || y >= n) continue;  // 出界
            if (st[x][y]) continue;
            if (g[x][y] == '.')
            {
                is_bound = true;
                continue;
            }

            q[ ++ tt] = {x, y};
            st[x][y] = true;
        }

        if (is_bound) bound ++ ;
    }
}

int main()
{
    scanf("%d", &n);

    for (int i = 0; i < n; i ++ ) scanf("%s", g[i]);

    int cnt = 0;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            if (!st[i][j] && g[i][j] == '#')
            {
                int total = 0, bound = 0;
                bfs(i, j, total, bound);
                if (total == bound) cnt ++ ;
            }

    printf("%d\n", cnt);

    return 0;
}
posted @ 2020-04-10 20:30  Krocz  阅读(415)  评论(0编辑  收藏  举报