博客园 首页 私信博主 显示目录 隐藏目录 管理 动画

逆元

逆元的作用?让我们来看下面的例子:
12 / 4 mod 7 = ? , 很显然结果是3
我们现在对于数对 (4,7), 可以知道 X = 2是 4 对7的乘法逆元即2*4=1(mod 7)
那么我们有(12 / 4) * (4 * 2 ) = (?) * (1) (mod 7)
除法被完美地转化为了乘法
理论依据:
F / A mod C = ?
如果存在 A*X = 1 (mod C)
那么2边同时乘起来,得到 F * X = ? (mod C)
成立条件
(1) 模方程 A * X = 1(mod C) 存在解
(2) A | F (F % A == 0)
以下来百度百科:
若ax=1 mod f 则称a关于模f的乘法逆元为x。也可表示为ax≡1(mod f)。
  当a与f互素时,a关于模f的乘法逆元有唯一解。如果不互素,则无解。如果f为素数,则从1到f-1的任意数都与f互素,即在1到f-1之间都恰好有一个关于模f的乘法逆元。
  例如,求5关于模14的乘法逆元:
  14=5*2+4
  5=4+1
  说明5与14互素,存在5关于14的乘法逆元。
  1=5-4=5-(14-5*2)=5*3-14
  因此,5关于模14的乘法逆元为3。

 

posted @ 2018-11-07 21:07  GUET_uzi  阅读(204)  评论(0编辑  收藏  举报

- 创建于 2018年9月1日

这是一位ACM爱好者&数学爱好者的个人站,内容主要是算法&数据结构&数学研究的技术文章,大部分来自学习,部分来源于网络,希望对大家有所帮助。