UVA1642:Magical GCD
UVA1642:Magical GCD
题意:
给定一个长度为\(n\leq 10^5\),每个数\(a_i\leq10^{12}\),找一个连续子序列使得子序列的公约数与长度的乘积最大。
\(T\)组数据。
思路:
区间最大公约数模板题。
枚举\((i,j)\)暴力的话时间复杂度为\(O(n^2logn)\),肯定会超时的。
给定序列\(a\),连续子段的\(gcd\)有\(log(max\{a_i\})\)种可能。
\(gcd(1,..,i)=gcd(gcd(1,..,i-1),a(i))\)。
所以每次固定右端点,向左寻找不同\(gcd\)的取值。
#include<bits/stdc++.h>
#define PLI pair<long long, int>
using namespace std;
typedef long long ll;
const int maxn = 1e5+10;
ll a[maxn];
int n;
ll gcd(ll a, ll b)
{
if(b == 0) return a;
return gcd(b, a%b);
}
//fir->gcd sec->右端点索引
vector<PLI> g[maxn];
void solve()
{
scanf("%d", &n);
for(int i = 1; i <= n; i++)
{
scanf("%lld", &a[i]);
g[i].clear();
}
for(int i = 1; i <= n; i++)
{
ll x = a[i], y = i;
g[i].push_back({x,y});
for(int j = 0; j < g[i-1].size(); j++)
{
PLI p = g[i-1][j];
ll t = gcd(x, p.first);
if(t != x)
{
x = t; y = p.second;
g[i].push_back({x, y});
}
}
}
ll ans = 0;
for(int i = 1; i <= n; i++)
{
PLI p1, p2;
for(int j = 0; j < g[i].size()-1; j++)
{
p1 = g[i][j];
p2 = g[i][j+1];
ans = max(ans, p1.first*(i-p2.second));
}
p1 = g[i][g[i].size()-1];
ans = max(ans, (ll)(i)*p1.first);
}
cout << ans << endl;
}
int main()
{
int T; scanf("%d", &T);
while(T--) solve();
return 0;
}