luogu_4568: 飞行路线

洛谷4568: 飞行路线

题意:

  • 给定一张无向图有\(n\)个点编号为\(0\)\(n-1\)。共有\(m\)条边,每条边有一个边权。
  • 可以选择\(k\)条边将边权改变为\(0\),给定起点和终点,问从起点到终点的路径的最小边权和为多少。

输入描述:

  • 第一行输入三个整数\(n,m,k\),分别表示点数,边数,\(k\)
  • 第二行输入两个整数\(s,t\)表示起点和终点。
  • 接下来有\(m\)行,每行输入\(x,y,z\)表示从\(x\)\(y\)有边权为\(z\)的边。
  • 数据范围
    • \(n\leq10^4,m\leq5*10^4,k\leq10,z\leq10^3\)

输出描述:

  • 输出一个整数表示答案。

思路:

  • 分层图模板题。
  • 以样例为例:

  • 建完图后跑最短路即可
  • 建完分层图后边数和点数的计算问题:
    • 点数: 每一层点有\(n\)个点,一共建立\(k\)层图,所以总点数为\(n*k\)
    • 边数: 每一层图有\(m\)条边,那么总共有\(k*m\)条边,相邻两层相互连边有\(k-1\)个中间层,所以总边数为\(k*m\)条边。无向图开两倍即可。
  • 同时防止毒瘤数据,每层终点连边,解决在\(k\)还没用完时就到达终点的情况。
  • 所以这时候点数\(+n\),边数\(+m\)
  • \(Hint\): 这里的无向图双向连边是指一层内部双向连边,而层与层之间只能单向连边。

代码:

#include<bits/stdc++.h>
#define PII pair<int, int>
using namespace std;

const int maxn = (1e4+10) * 11;
const int maxm = 1e6 + 10 + 5e4 + 10;

int n, m, k, s, t;

int head[maxn], ver[maxm<<1], nex[maxm<<1], edge[maxm<<1], tot;
inline void add_edge(int x, int y, int z){
    ver[++tot] = y; edge[tot] = z;
    nex[tot] = head[x]; head[x] = tot;
}

int dist[maxn];
bool v[maxn];
void dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[s] = 0;
    priority_queue<PII, vector<PII>, greater<PII> > q;
    q.push({0, s});
    while(q.size())
    {
        int x = q.top().second; q.pop();
        if(v[x]) continue;
        v[x] = 1;
        for(int i = head[x]; i; i = nex[i])
        {
            int y = ver[i], z = edge[i];
            if(dist[y] > dist[x] + z)
            {
                dist[y] = dist[x] + z;
                q.push({dist[y], y});
            }
        }

    }
}

int main()
{
    scanf("%d%d%d%d%d", &n, &m, &k, &s, &t);
    s++; t++;
    for(int i = 1, x, y, z; i <= m; i++)
    {
        scanf("%d%d%d", &x, &y, &z); x++, y++;
        add_edge(x, y, z); add_edge(y, x, z);
        for(int j = 1; j <= k; j++)
        {
            //相互两层之间连边
            add_edge(x+(j-1)*n, y+j*n, 0);
            add_edge(y+(j-1)*n, x+j*n, 0);
            //一层中内部连边
            add_edge(x+j*n, y+j*n, z);
            add_edge(y+j*n, x+j*n, z);
        }
    }

    //防止毒瘤数据, k次机会还没用完就到了终点
    for(int i = 1; i <= k; i++)
        add_edge(t+(i-1)*n, t+i*n, 0); //每层之间的终点连边
    dijkstra();
    cout << dist[t+k*n] << endl;
    return 0;
}

posted @ 2019-10-12 11:44  zhaoxiaoyun  阅读(122)  评论(0编辑  收藏  举报