[HNOI2001]产品加工
题目描述
某加工厂有A、B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。
你的任务就是:已知每个任务在A机器上加工所需的时间t1, B机器上加工所需的时间t2及由两台机器共同加工所需的时间t3,请你合理安排任务的调度顺序,使完成所有n个任务的总时间最少。
输入输出格式
输入格式:(输入文件共n+1行)
第1行为 n。 n是任务总数(1≤n≤6000)
第i+1行为3个[0,5]之间的非负整数t1,t2,t3,分别表示第i个任务在A机器上加工、B机器上加工、两台机器共同加工所需要的时间。如果所给的时间t1或t2为0表示任务不能在该台机器上加工,如果t3为0表示任务不能同时由两台机器加工。
输出格式:最少完成时间
输入输出样例
输入样例#1:
复制
5 2 1 0 0 5 0 2 4 1 0 0 3 2 1 1
输出样例#1: 复制
9
dp[ i ] 表示 A用时 i 时,B 用时的最短时间;
进程dp;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize("O3") using namespace std; #define maxn 200005 #define inf 0x3f3f3f3f #define INF 999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int dp[maxn]; int n; int sum; int a[maxn], b[maxn], c[maxn]; int main() { //ios::sync_with_stdio(0); //rdint(n); n = rd(); // for (int i = 1; i <= n; i++) { // if (a[i] == 0)a[i] = inf; if (b[i] == 0)b[i] = inf; if (c[i] == 0)c[i] = inf; // } memset(dp, 0x3f, sizeof(dp)); dp[0] = 0; for (int i = 1; i <= n; i++) { // rdint(a[i]); rdint(b[i]); rdint(c[i]); a[i] = rd(); b[i] = rd(); c[i] = rd(); sum += max(a[i], max(b[i], c[i])); for (int j = sum; j >= 0; j--) { if (b[i])dp[j] += b[i]; else dp[j] = inf; if (a[i] && j >= a[i])dp[j] = min(dp[j], dp[j - a[i]]); if (c[i] && j >= c[i])dp[j] = min(dp[j], dp[j - c[i]] + c[i]); } } int Min = inf; for (int i = 0; i <= sum; i++)Min = min(Min, max(i, dp[i])); printf("%d\n", Min); return 0; }
EPFL - Fighting