Machine learning 第5周编程作业
1.Sigmoid Gradient
function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigmoid function %evaluated at z % g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function % evaluated at z. This should work regardless if z is a matrix or a % vector. In particular, if z is a vector or matrix, you should return % the gradient for each element. g = zeros(size(z)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the gradient of the sigmoid function evaluated at % each value of z (z can be a matrix, vector or scalar). g=sigmoid(z).*(1-sigmoid(z)); % ============================================================= end
2.nnCostFunction
这是一道综合问题;
Ⅰ:计算代价函数J(前向传播)
Ⅱ:BackPropagation
Ⅲ:正则化;
function [J grad] = nnCostFunction(nn_params, ... input_layer_size, ... hidden_layer_size, ... num_labels, ... X, y, lambda) %NNCOSTFUNCTION Implements the neural network cost function for a two layer %neural network which performs classification % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... % X, y, lambda) computes the cost and gradient of the neural network. The % parameters for the neural network are "unrolled" into the vector % nn_params and need to be converted back into the weight matrices. % % The returned parameter grad should be a "unrolled" vector of the % partial derivatives of the neural network. % % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices % for our 2 layer neural network Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); % Setup some useful variables m = size(X, 1); % You need to return the following variables correctly J = 0; Theta1_grad = zeros(size(Theta1)); Theta2_grad = zeros(size(Theta2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should complete the code by working through the % following parts. % % Part 1: Feedforward the neural network and return the cost in the % variable J. After implementing Part 1, you can verify that your % cost function computation is correct by verifying the cost % computed in ex4.m % % Part 2: Implement the backpropagation algorithm to compute the gradients % Theta1_grad and Theta2_grad. You should return the partial derivatives of % the cost function with respect to Theta1 and Theta2 in Theta1_grad and % Theta2_grad, respectively. After implementing Part 2, you can check % that your implementation is correct by running checkNNGradients % % Note: The vector y passed into the function is a vector of labels % containing values from 1..K. You need to map this vector into a % binary vector of 1's and 0's to be used with the neural network % cost function. % % Hint: We recommend implementing backpropagation using a for-loop % over the training examples if you are implementing it for the % first time. % % Part 3: Implement regularization with the cost function and gradients. % % Hint: You can implement this around the code for % backpropagation. That is, you can compute the gradients for % the regularization separately and then add them to Theta1_grad % and Theta2_grad from Part 2. % X=[ones(m,1) X]; a1=Theta1*X'; z1=[ones(m,1),sigmoid(a1)']; a2=Theta2*z1'; h=sigmoid(a2); yy=zeros(m,num_labels); for i=1:m, yy(i,y(i))=1; endfor J=1/m*sum( sum( (-yy).*log(h')-(1-yy).*log(1-h') ) ); J=J+lambda/(2*m)*( sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2))); for i=1:m, a1=X(i,:)'; z2=Theta1*a1; a2=[1;sigmoid(z2)]; z3=Theta2*a2; a3=sigmoid(z3); tmpy=yy(i,:); dlt3=a3-tmpy'; dlt2=(Theta2(:,2:end)'*dlt3.*sigmoidGradient(z2)); Theta1_grad=Theta1_grad+dlt2*a1'; Theta2_grad=Theta2_grad+dlt3*a2'; endfor Theta1_grad=Theta1_grad./m; Theta2_grad=Theta2_grad./m; Theta1(:,1)=0; Theta2(:,1)=0; Theta1_grad=Theta1_grad+lambda/m*Theta1; Theta2_grad=Theta2_grad+lambda/m*Theta2; % ------------------------------------------------------------- % ========================================================================= % Unroll gradients grad = [Theta1_grad(:) ; Theta2_grad(:)]; end
EPFL - Fighting