编辑距离 区间dp

题目描述

设A和B是两个字符串。我们要用最少的字符操作次数,将字符串A转换为字符串B。这里所说的字符操作共有三种:

1、删除一个字符;

2、插入一个字符;

3、将一个字符改为另一个字符;

!皆为小写字母!

输入输出格式

输入格式:

 

第一行为字符串A;第二行为字符串B;字符串A和B的长度均小于2000。

 

输出格式:

 

只有一个正整数,为最少字符操作次数。

 

输入输出样例

输入样例#1: 复制
sfdqxbw
gfdgw
输出样例#1: 复制
4


设dp[ i ][ j ]表示a串1~i转换为b串1~j所需的最小cost;
那么转移的时候可以从dp[ i-1 ][ j ] or dp[ i ][ j-1 ] or dp[ i-1 ][ j-1 ]转移到dp[ i ][ j ];
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;

inline int rd() {
	int x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}


ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }



/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/

char a[3003], b[3003];
int dp[2002][2002];
int main()
{
	//	ios::sync_with_stdio(0);
	rdstr(a); rdstr(b);
	int lena = strlen(a);
	int lenb = strlen(b);
	for (int i = 1; i <= lena; i++)dp[i][0] = i;
	for (int j = 1; j <= lenb; j++)dp[0][j] = j;
	for (int i = 1; i <= lena; i++) {
		for (int j = 1; j <= lenb; j++)dp[i][j] = inf;
	}
	for (int i = 1; i <= lena; i++) {
		for (int j = 1; j <= lenb; j++) {
			if (a[i-1] == b[j-1]) {
				dp[i][j] = dp[i - 1][j - 1];
			}
			else {
				dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
			}
		}
	}
	printf("%d\n", dp[lena][lenb]);
	return 0;
}

  




posted @ 2019-03-26 09:27  NKDEWSM  阅读(244)  评论(0编辑  收藏  举报