P1265 公路修建 最小生成树

题目描述

某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,政府决定修建公路。修建公路的任务由各城市共同完成。

修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。政府负责审批这些申请以决定是否同意修建。

政府审批的规则如下:

(1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;

(2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则政府将否决其中最短的一条公路的修建申请;

(3)其他情况的申请一律同意。

一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。

当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。

你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。

输入输出格式

输入格式:

 

第一行一个整数n,表示城市的数量。(n≤5000)

以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)

 

输出格式:

 

一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)

 

输入输出样例

输入样例#1: 复制
4
0 0
1 2
-1 2
0 4
输出样例#1: 复制
6.47

说明

修建的公路如图所示: 

由于保证有唯一解,所以规则2 也就没用了;

对于完全图来说,prime比kruskal方便许多

 

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;

inline int rd() {
	int x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}


ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }



/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/
int n;

struct node {
	double x, y;
//	double Dis;
}e[maxn];
double dist[maxn];
bool vis[maxn];
double ans;
double dis(int x, int y) {
	return 1.0*sqrt((e[x].x - e[y].x)*(e[x].x - e[y].x) + (e[x].y - e[y].y)*(e[x].y - e[y].y));
}

int main()
{
//	ios::sync_with_stdio(0);
	n = rd(); 
	for (int i = 1; i <= n; i++) {
		rdlf(e[i].x); rdlf(e[i].y); dist[i] = inf;
	}
	dist[1] = 0; int pos = 0;
	for (int i = 1; i <= n; i++) {
		double minn = inf;
		for (int j = 1; j <= n; j++) {
			if (dist[j] < minn && !vis[j]) {
				pos = j; minn = dist[j];
			}
		}
		ans += minn; vis[pos] = 1;
		for (int j = 1; j <= n; j++) {
			double tmp = dis(pos, j);
			dist[j] = min(dist[j], tmp);
		}

	}
	printf("%.2lf\n", 1.0*ans);
	return 0;
}

 

  

 

posted @ 2019-03-19 15:36  NKDEWSM  阅读(260)  评论(0编辑  收藏  举报