Machine learning吴恩达第二周coding作业(选做)
1.Feature Normalization:
归一化的处理
function [X_norm, mu, sigma] = featureNormalize(X) %FEATURENORMALIZE Normalizes the features in X % FEATURENORMALIZE(X) returns a normalized version of X where % the mean value of each feature is 0 and the standard deviation % is 1. This is often a good preprocessing step to do when % working with learning algorithms. % You need to set these values correctly X_norm = X; mu = zeros(1, size(X, 2)); sigma = zeros(1, size(X, 2)); % ====================== YOUR CODE HERE ====================== % Instructions: First, for each feature dimension, compute the mean % of the feature and subtract it from the dataset, % storing the mean value in mu. Next, compute the % standard deviation of each feature and divide % each feature by it's standard deviation, storing % the standard deviation in sigma. % % Note that X is a matrix where each column is a % feature and each row is an example. You need % to perform the normalization separately for % each feature. % % Hint: You might find the 'mean' and 'std' functions useful. % for i=1:size(X,2), mu(i)=mean(X(:,i)); sigma(i)=std(X(:,i)); X_norm(:,i)=(X_norm(:,i)-mu(i))/sigma(i); end; % ============================================================ end
2. Computing Cost (for Multiple Variables) && Gradient Descent (for Multiple Variables)
由于我们单变量的时候就是用矩阵形式处理的,所以代码与单变量相同;
3.Normal Equations
正规方程就比较简单了;
function [theta] = normalEqn(X, y) %NORMALEQN Computes the closed-form solution to linear regression % NORMALEQN(X,y) computes the closed-form solution to linear % regression using the normal equations. theta = zeros(size(X, 2), 1); % ====================== YOUR CODE HERE ====================== % Instructions: Complete the code to compute the closed form solution % to linear regression and put the result in theta. % % ---------------------- Sample Solution ---------------------- theta=inv(X'*X)*X'*y; % ------------------------------------------------------------- % ============================================================ end
EPFL - Fighting