吃奶酪 状压dp
题目描述
房间里放着n块奶酪。一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在(0,0)点处。
输入输出格式
输入格式:第一行一个数n (n<=15)
接下来每行2个实数,表示第i块奶酪的坐标。
两点之间的距离公式=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))
输出格式:一个数,表示要跑的最少距离,保留2位小数。
输入输出样例
输入样例#1:
复制
4 1 1 1 -1 -1 1 -1 -1
输出样例#1: 复制
7.41
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<time.h> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 200005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) #define mclr(x,a) memset((x),a,sizeof(x)) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-5 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int n; struct node { double x, y; }nd[20]; double dp[17][(1 << 16) + 2]; double dis(int i, int j) { return 1.0*sqrt((nd[i].x - nd[j].x)*(nd[i].x - nd[j].x) + (nd[i].y - nd[j].y)*(nd[i].y - nd[j].y)); } int main() { // ios::sync_with_stdio(0); n = rd(); ms(nd); mclr(dp, 127); for (int i = 1; i <= n; i++) { rdlf(nd[i].x); rdlf(nd[i].y); } for (int S = 0; S <= (1 << n) - 1; S++) { for (int i = 1; i <= n; i++) { if ((S&(1 << (i - 1))) == 0)continue; if (S == (1 << (i - 1))) { dp[i][S] = 0; continue; } for (int j = 1; j <= n; j++) { if (i == j)continue; if (S&(1 << (j - 1))) { dp[i][S] = min(dp[i][S], 1.0*dis(i, j) + dp[j][S - (1 << (i - 1))]); } } } } double MIN = 1.0*inf; for (int i = 1; i <= n; i++) { MIN = min(MIN, dis(0, i) + dp[i][(1 << n) - 1]); } printf("%.2lf\n", 1.0*MIN); return 0; }
EPFL - Fighting