吃奶酪 状压dp

题目描述

房间里放着n块奶酪。一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在(0,0)点处。

输入输出格式

输入格式:

第一行一个数n (n<=15)

接下来每行2个实数,表示第i块奶酪的坐标。

两点之间的距离公式=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))

输出格式:

一个数,表示要跑的最少距离,保留2位小数。

输入输出样例

输入样例#1: 复制
4
1 1
1 -1
-1 1
-1 -1
输出样例#1: 复制
7.41
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;

inline int rd() {
	int x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}


ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }



/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/

int n;
struct node {
	double x, y;
}nd[20];

double dp[17][(1 << 16) + 2];

double dis(int i, int  j) {
	return 1.0*sqrt((nd[i].x - nd[j].x)*(nd[i].x - nd[j].x) + (nd[i].y - nd[j].y)*(nd[i].y - nd[j].y));
}

int main()
{
	//	ios::sync_with_stdio(0);
	n = rd(); ms(nd); mclr(dp, 127);
	for (int i = 1; i <= n; i++) {
		rdlf(nd[i].x); rdlf(nd[i].y);
	}
	for (int S = 0; S <= (1 << n) - 1; S++) {
		for (int i = 1; i <= n; i++) {
			if ((S&(1 << (i - 1))) == 0)continue;
			if (S == (1 << (i - 1))) {
				dp[i][S] = 0; continue;
			}
			for (int j = 1; j <= n; j++) {
				if (i == j)continue;
				if (S&(1 << (j - 1))) {
					dp[i][S] = min(dp[i][S], 1.0*dis(i, j) + dp[j][S - (1 << (i - 1))]);
				}
			}
		}
	}
	double MIN = 1.0*inf;
	for (int i = 1; i <= n; i++) {
		MIN = min(MIN, dis(0, i) + dp[i][(1 << n) - 1]);
	}
	printf("%.2lf\n", 1.0*MIN);
	return 0;
}

 

posted @ 2019-03-07 11:15  NKDEWSM  阅读(230)  评论(0编辑  收藏  举报