51 Nod 1042 数位dp
1042 数字0-9的数量
给出一段区间a-b,统计这个区间内0-9出现的次数。
比如 10-19,1出现11次(10,11,12,13,14,15,16,17,18,19,其中11包括2个1),其余数字各出现1次。
输入
两个数a,b(1 <= a <= b <= 10^18)
输出
输出共10行,分别是0-9出现的次数
输入样例
10 19
输出样例
1 11 1 1 1 1 1 1 1 1
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<time.h> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 20005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) #define mclr(x,a) memset((x),a,sizeof(x)) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-5 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int len; ll a, b; int num[20]; ll dp[20][20002]; ll dfs(int pos, int limit, int lead, ll sum,int dig) { if (pos == 0)return sum; if (!limit&&lead&&dp[pos][sum] != -1)return dp[pos][sum]; ll ans = 0; int up = limit ? num[pos] : 9; for (int i = 0; i <= up; i++) { ans += dfs(pos - 1, limit && (i == up), lead || i, sum + ((i == dig)&&(lead||i)), dig); } if (lead && !limit)dp[pos][sum] = ans; return ans; } ll sol(ll a, ll dig) { mclr(dp, -1); len = 0; while (a) { num[++len] = a % 10; a /= 10; } ll ans = 0; ans = dfs(len, 1, 0, 0, dig); return ans; } int main() { // ios::sync_with_stdio(0); rdllt(a); rdllt(b); for (int i = 0; i <= 9; i++) { printf("%lld\n", sol(b, i) - sol(a - 1, i)); } return 0; }
EPFL - Fighting