【模板】矩阵加速(数列) 矩阵快速幂

题目描述

a[1]=a[2]=a[3]=1

a[x]=a[x-3]+a[x-1] (x>3)

求a数列的第n项对1000000007(10^9+7)取余的值。

输入输出格式

输入格式:

第一行一个整数T,表示询问个数。

以下T行,每行一个正整数n。

输出格式:

每行输出一个非负整数表示答案。

输入输出样例

输入样例#1: 复制
3
6
8
10
输出样例#1: 复制
4
9
19

说明

对于30%的数据 n<=100;

对于60%的数据 n<=2*10^7;

对于100%的数据 T<=100,n<=2*10^9;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;

inline int rd() {
	int x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}


ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }



/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/

struct Mat {
	int a[5][5];
	void init() {
		ms(a);
		for (int i = 0; i < 5; i++)a[i][i] = 1;
	}
};

Mat mul(Mat a, Mat b) {
	Mat ans;
	for (int i = 0; i < 5; i++) {
		for (int j = 0; j < 5; j++) {
			ans.a[i][j] = 0;
			for (int k = 0; k < 5; k++) {
				ans.a[i][j] = (ans.a[i][j] + a.a[i][k] % mod*b.a[k][j] % mod) % mod;
				ans.a[i][j] %= mod;
			}
		}
	}
	return ans;
}

Mat qpow(Mat a, int n) {
	Mat ans;
	ans.init();
	while (n) {
		if (n & 1)ans = mul(ans, a);
		a = mul(a, a);
		n >>= 1;
	}
	return ans;
}

int main()
{
	//	ios::sync_with_stdio(0);
	int T = rd();
	while (T--) {
		int n = rd();
		if (n == 1 || n == 2 || n == 3)cout << 1 << endl;
		else {
			Mat tmp; ms(tmp.a);
			tmp.a[0][0] = 1; tmp.a[0][2] = 1;
			tmp.a[1][0] = 1; tmp.a[2][1] = 1;
			tmp = qpow(tmp, n - 3);
			ll ans = (1ll * tmp.a[0][0] % mod + 1ll * tmp.a[0][1] % mod + 1ll * tmp.a[0][2] % mod) % mod;
			printf("%lld\n", ans%mod);
		}
	}
	return 0;
}

 

posted @ 2019-02-14 11:03  NKDEWSM  阅读(241)  评论(0编辑  收藏  举报