GCD BZOJ2818 [省队互测] 数学
题目描述
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.
输入输出格式
输入格式:一个整数N
输出格式:答案
输入输出样例
说明
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
来源:bzoj2818
本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作。
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<time.h> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 2000005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) #define mclr(x,a) memset((x),a,sizeof(x)) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-5 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ bool vis[10000002]; int phi[10000002]; ll sum[10000002 >> 1]; int pri[10000002]; int tot; int N; void init() { phi[1] = 1; for (int i = 2; i <= 10000000; i++) { if (!vis[i]) { pri[++tot] = i; phi[i] = i - 1; } for (int j = 1; j <= tot && i*pri[j] <= 10000000; j++) { vis[i*pri[j]] = true; phi[i*pri[j]] = phi[i] * phi[pri[j]]; if (i%pri[j] == 0) { phi[i*pri[j]] = phi[i] * pri[j]; break; } } } } int main() { // ios::sync_with_stdio(0); N = rd(); init(); for (int i = 1; i <= 10000000 / 2; i++)sum[i] = 1ll*sum[i - 1] + 1ll*phi[i]; ll ans = 0; for (int i = 1; i <= tot; i++) { if (pri[i] > N)break; ans += 1ll * 2 * sum[N / pri[i]] - 1; } cout << (ll)ans << endl; return 0; }
EPFL - Fighting