[SDOi2012]Longge的问题 BZOJ2705 数学
题目背景
SDOi2012
题目描述
Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。
输入输出格式
输入格式:一个整数,为N。
输出格式:一个整数,为所求的答案。
输入输出样例
说明
对于60%的数据,0<N<=2^16
对于100%的数据,0<N<=2^32
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<time.h> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 2000005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) #define mclr(x,a) memset((x),a,sizeof(x)) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-5 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll N; ll Phi(ll x) { ll ans = x; for (ll i = 2; i <= (ll)sqrt(x); i++) { if (x%i == 0) { ans = ans / i * (i - 1); while (x%i == 0)x /= i; } } if (x > 1)ans = ans / x * (x - 1); return ans; } int main() { // ios::sync_with_stdio(0); rdllt(N); ll ans = 0; for (ll i = 1; i <= sqrt(N); i++) { if (N%i == 0) { if (i*i == N) { ans += Phi(i)*i; continue; } else { ans += Phi(i)*(N / i) + Phi(N / i)*i; } } } cout << ans << endl; return 0; }
EPFL - Fighting