BZOJ3156 防御准备 斜率优化dp

Description

 

Input

第一行为一个整数N表示战线的总长度。

第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai。

Output

共一个整数,表示最小的战线花费值。

 

Sample Input



10
2 3 1 5 4 5 6 3 1 2

Sample Output


18

HINT



1<=N<=10^6,1<=Ai<=10^9

 

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 1000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;

inline int rd() {
	int x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}


ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }



/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/
int n;
ll a[maxn];
ll q[maxn];
ll dp[maxn];
int head, tail;

ll FZ(ll k, ll j) {
	return 2ll * (dp[k] - dp[j]) + 1ll * k*k + k - 1ll * j*j - j;
}

double slope(ll k, ll j) {
	return 1.0*FZ(k, j) / (1.0*(k - j));
}

int main()
{
	//	ios::sync_with_stdio(0);
	n = rd();
	for (int i = 1; i <= n; i++)rdllt(a[i]);
	for (ll i = 1; i <= (ll)n; i++) {
		while (head < tail&&slope(q[head + 1], q[head]) <= 2.0*i)head++;
		dp[i] = dp[q[head]] + (i - q[head])*(i - q[head] - 1) / 2.0 + a[i];
		while (head<tail&&slope(q[tail], q[tail - 1])>slope(q[tail], i))tail--;
		q[++tail] = i;
	}
	cout << (ll)dp[n] << endl;
	return 0;
}

 

posted @ 2019-02-10 15:37  NKDEWSM  阅读(175)  评论(0编辑  收藏  举报