BZOJ3156 防御准备 斜率优化dp
Description
Input
第一行为一个整数N表示战线的总长度。
第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai。
Output
共一个整数,表示最小的战线花费值。
Sample Input
10
2 3 1 5 4 5 6 3 1 2
Sample Output
18
HINT
1<=N<=10^6,1<=Ai<=10^9
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<time.h> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 1000005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) #define mclr(x,a) memset((x),a,sizeof(x)) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-5 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int n; ll a[maxn]; ll q[maxn]; ll dp[maxn]; int head, tail; ll FZ(ll k, ll j) { return 2ll * (dp[k] - dp[j]) + 1ll * k*k + k - 1ll * j*j - j; } double slope(ll k, ll j) { return 1.0*FZ(k, j) / (1.0*(k - j)); } int main() { // ios::sync_with_stdio(0); n = rd(); for (int i = 1; i <= n; i++)rdllt(a[i]); for (ll i = 1; i <= (ll)n; i++) { while (head < tail&&slope(q[head + 1], q[head]) <= 2.0*i)head++; dp[i] = dp[q[head]] + (i - q[head])*(i - q[head] - 1) / 2.0 + a[i]; while (head<tail&&slope(q[tail], q[tail - 1])>slope(q[tail], i))tail--; q[++tail] = i; } cout << (ll)dp[n] << endl; return 0; }
EPFL - Fighting