最小圆覆盖 [模板] BZOJ 1337&1336
题目描述
给出N个点,让你画一个最小的包含所有点的圆。
输入输出格式
输入格式:先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000.0)
输出格式:输出圆的半径,及圆心的坐标,保留10位小数
输入输出样例
输入样例#1:
复制
6 8.0 9.0 4.0 7.5 1.0 2.0 5.1 8.7 9.0 2.0 4.5 1.0
输出样例#1: 复制
5.0000000000 5.0000000000 5.0000000000
说明
5.00 5.00 5.0
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 400005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-11 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline int rd() { int x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ struct node { double x, y; }pt[maxn]; node o; int n; double r; double dis(node a, node b) { return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y)); } void dt(node p1, node p2, node p3) { double a, b, c, d, e, f; a = p2.y - p1.y; b = p3.y - p1.y; c = p2.x - p1.x; d = p3.x - p1.x; f = p3.x*p3.x + p3.y*p3.y - p1.x*p1.x - p1.y*p1.y; e = p2.x*p2.x + p2.y*p2.y - p1.x*p1.x - p1.y*p1.y; o.x = (a*f - b * e) / (2 * a*d - 2 * b*c); o.y = (d*e - c * f) / (2 * a*d - 2 * b*c); r = dis(o, p1); } int main() { // ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); rdint(n); for (int i = 1; i <= n; i++) { rdlf(pt[i].x); rdlf(pt[i].y); } random_shuffle(pt + 1, pt + 1 + n); o = pt[1]; r = 0; for (int i = 2; i <= n; i++) { if (dis(pt[i], o) > r + eps) { o = pt[i]; r = 0; for (int j = 1; j <= i - 1; j++) { if (dis(o, pt[j]) > r + eps) { o.x = (pt[i].x + pt[j].x) / 2.0; o.y = (pt[i].y + pt[j].y) / 2.0; r = dis(o, pt[j]); for (int k = 1; k <= j - 1; k++) { if (dis(o, pt[k]) > r + eps) { dt(pt[i], pt[j], pt[k]); } } } } } } printf("%.10lf\n%.10lf %.10lf", 1.0*r, o.x, o.y); return 0; }
EPFL - Fighting