Fxx and game hdu 5945 单调队列dp
dfs你怕是要爆炸
考虑dp;
很容易想到 dp[ i ] 表示到 i 时的最少转移步数;
那么: dp[ i ]= min( dp[ i ],dp[ i-j ]+1 );
其中 i-t<=j<=i;
当 i%k==0时 ,dp[ i ]=min( dp[ i ],dp[ i/k ]+1 );
很明显这种要T到飞起;
我们要优化dp;
1e6的数据考虑O(n)级别的;
队列优化:
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 2000005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-4 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int dp[maxn]; int q[maxn]; int main() { // ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int T; cin >> T; while (T--) { ms(dp); int n, k, t; cin >> n >> k >> t; int l = 1, r = 1; dp[1] = 0; q[r++] = 1; for (int i = 2; i <= n; i++) { dp[i] = inf; while (l < r&&q[l] < i - t)l++; if (l < r)dp[i] = dp[q[l]] + 1; if (i%k == 0)dp[i] = min(dp[i], dp[i / k] + 1); while (l < r&&dp[q[r-1]] >= dp[i])r--; q[r++] = i; } cout << dp[n] << endl; } return 0; }
EPFL - Fighting