灾后重建 Floyd
题目背景
BBB地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。
题目描述
给出BBB地区的村庄数NNN,村庄编号从000到N−1N-1N−1,和所有MMM条公路的长度,公路是双向的。并给出第iii个村庄重建完成的时间tit_iti,你可以认为是同时开始重建并在第tit_iti天重建完成,并且在当天即可通车。若tit_iti为000则说明地震未对此地区造成损坏,一开始就可以通车。之后有QQQ个询问(x,y,t)(x, y, t)(x,y,t),对于每个询问你要回答在第ttt天,从村庄xxx到村庄y的最短路径长度为多少。如果无法找到从xxx村庄到yyy村庄的路径,经过若干个已重建完成的村庄,或者村庄xxx或村庄yyy在第t天仍未重建完成 ,则需要返回−1-1−1。
输入输出格式
输入格式:第一行包含两个正整数N,MN,MN,M,表示了村庄的数目与公路的数量。
第二行包含NNN个非负整数t0,t1,…,tN−1t_0, t_1,…, t_{N-1}t0,t1,…,tN−1,表示了每个村庄重建完成的时间,数据保证了t0≤t1≤…≤tN−1t_0 ≤ t_1 ≤ … ≤ t_{N-1}t0≤t1≤…≤tN−1。
接下来MMM行,每行333个非负整数i,j,wi, j, wi,j,w,www为不超过100001000010000的正整数,表示了有一条连接村庄iii与村庄jjj的道路,长度为www,保证i≠ji≠ji≠j,且对于任意一对村庄只会存在一条道路。
接下来一行也就是M+3M+3M+3行包含一个正整数QQQ,表示QQQ个询问。
接下来QQQ行,每行333个非负整数x,y,tx, y, tx,y,t,询问在第ttt天,从村庄xxx到村庄yyy的最短路径长度为多少,数据保证了ttt是不下降的。
输出格式:共QQQ行,对每一个询问(x,y,t)(x, y, t)(x,y,t)输出对应的答案,即在第ttt天,从村庄xxx到村庄yyy的最短路径长度为多少。如果在第t天无法找到从xxx村庄到yyy村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄yyy在第ttt天仍未修复完成,则输出−1-1−1。
输入输出样例
说明
对于30%30\%30%的数据,有N≤50N≤50N≤50;
对于30%30\%30%的数据,有ti=0t_i= 0ti=0,其中有20%20\%20%的数据有ti=0t_i = 0ti=0且N>50N>50N>50;
对于50%50\%50%的数据,有Q≤100Q≤100Q≤100;
对于100%100\%100%的数据,有N≤200N≤200N≤200,M≤N×(N−1)/2M≤N \times (N-1)/2M≤N×(N−1)/2,Q≤50000Q≤50000Q≤50000,所有输入数据涉及整数均不超过100000100000100000。
知识点不难,重要是idea;
由于保证 t 是严格递增的,那么我们每次更新就行了;
floyd;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 200005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-4 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int dis[300][300]; int n, m; int fixt[maxn]; void floyd(int k) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (dis[i][j] > dis[i][k] + dis[k][j]) dis[i][j] = dis[j][i] = dis[i][k] + dis[k][j]; } } } int main() { //ios::sync_with_stdio(0); rdint(n); rdint(m); for (int i = 0; i < n; i++)rdint(fixt[i]); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++)dis[i][j] = dis[j][i] = 1e9; } for (int i = 0; i <= n; i++) { dis[i][i] = 0; } for (int i = 0; i < m; i++) { int u, v, w; rdint(u); rdint(v); rdint(w); dis[u][v] = dis[v][u] = w; } int cur = 0; int q; cin >> q; while (q--) { int x, y, t; rdint(x); rdint(y); rdint(t); while (cur < n&&fixt[cur] <= t) { floyd(cur); cur++; } if (fixt[x] > t || fixt[y] > t) { cout << -1 << endl; } else { if (dis[x][y] == 1e9)cout << -1 << endl; else cout << dis[x][y] << endl; } } return 0; }