灾后重建 Floyd

题目背景

BBB地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。

题目描述

给出BBB地区的村庄数NNN,村庄编号从000到N−1N-1N1,和所有MMM条公路的长度,公路是双向的。并给出第iii个村庄重建完成的时间tit_iti,你可以认为是同时开始重建并在第tit_iti天重建完成,并且在当天即可通车。若tit_iti000则说明地震未对此地区造成损坏,一开始就可以通车。之后有QQQ个询问(x,y,t)(x, y, t)(x,y,t),对于每个询问你要回答在第ttt天,从村庄xxx到村庄y的最短路径长度为多少。如果无法找到从xxx村庄到yyy村庄的路径,经过若干个已重建完成的村庄,或者村庄xxx或村庄yyy在第t天仍未重建完成 ,则需要返回−1-11。

输入输出格式

输入格式:

第一行包含两个正整数N,MN,MN,M,表示了村庄的数目与公路的数量。

第二行包含NNN个非负整数t0,t1,…,tN−1t_0, t_1,…, t_{N-1}t0,t1,,tN1,表示了每个村庄重建完成的时间,数据保证了t0≤t1≤…≤tN−1t_0 ≤ t_1 ≤ … ≤ t_{N-1}t0t1tN1

接下来MMM行,每行333个非负整数i,j,wi, j, wi,j,w,www为不超过100001000010000的正整数,表示了有一条连接村庄iii与村庄jjj的道路,长度为www,保证i≠ji≠jij,且对于任意一对村庄只会存在一条道路。

接下来一行也就是M+3M+3M+3行包含一个正整数QQQ,表示QQQ个询问。

接下来QQQ行,每行333个非负整数x,y,tx, y, tx,y,t,询问在第ttt天,从村庄xxx到村庄yyy的最短路径长度为多少,数据保证了ttt是不下降的。

输出格式:

QQQ行,对每一个询问(x,y,t)(x, y, t)(x,y,t)输出对应的答案,即在第ttt天,从村庄xxx到村庄yyy的最短路径长度为多少。如果在第t天无法找到从xxx村庄到yyy村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄yyy在第ttt天仍未修复完成,则输出−1-11。

输入输出样例

输入样例#1: 复制
4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4
输出样例#1: 复制
-1
-1
5
4

说明

对于30%30\%30%的数据,有N≤50N≤50N50;

对于30%30\%30%的数据,有ti=0t_i= 0ti=0,其中有20%20\%20%的数据有ti=0t_i = 0ti=0且N>50N>50N>50;

对于50%50\%50%的数据,有Q≤100Q≤100Q100;

对于100%100\%100%的数据,有N≤200N≤200N200,M≤N×(N−1)/2M≤N \times (N-1)/2MN×(N1)/2,Q≤50000Q≤50000Q50000,所有输入数据涉及整数均不超过100000100000100000。

知识点不难,重要是idea;

由于保证 t 是严格递增的,那么我们每次更新就行了;

floyd;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
	ll x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == '-') f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}

ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }


/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/

int dis[300][300];
int n, m;
int fixt[maxn];

void floyd(int k) {
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			if (dis[i][j] > dis[i][k] + dis[k][j])
				dis[i][j] = dis[j][i] = dis[i][k] + dis[k][j];
		}
	}
}

int main() {
	//ios::sync_with_stdio(0);
	rdint(n); rdint(m);
	for (int i = 0; i < n; i++)rdint(fixt[i]);
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++)dis[i][j] = dis[j][i] = 1e9;
	}
	for (int i = 0; i <= n; i++) {
		dis[i][i] = 0;
	}
	for (int i = 0; i < m; i++) {
		int u, v, w; rdint(u); rdint(v); rdint(w);
		dis[u][v] = dis[v][u] = w;
	}
	int cur = 0;
	int q; cin >> q;
	while (q--) {
		int x, y, t; rdint(x); rdint(y); rdint(t);
		while (cur < n&&fixt[cur] <= t) {
			floyd(cur); cur++;
		}
		if (fixt[x] > t || fixt[y] > t) {
			cout << -1 << endl;
		}
		else {
			if (dis[x][y] == 1e9)cout << -1 << endl;
			else cout << dis[x][y] << endl;
		}
	}
	return 0;
}

 

posted @ 2019-01-17 20:42  NKDEWSM  阅读(157)  评论(0编辑  收藏  举报