[SCOI2007]修车 费用流 BZOJ 1070
题目描述
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。
说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
输入输出格式
输入格式:第一行有两个数M,N,表示技术人员数与顾客数。
接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。
输出格式:最小平均等待时间,答案精确到小数点后2位。
输入输出样例
说明
(2<=M<=9,1<=N<=60), (1<=T<=1000)
假设对于某一个技术工人来说,维修序列为:
w1,w2,w3...,wn;
那么等待的时间:
T=n*w1+(n-1)*w2+...+wn;
可见费用(消耗的时间)与位置有关;
那么我们将技术工拆点,拆成 n 个;
然后建边的时候分别设立不同的费用,最后跑一下最小费用最大流;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 20005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ bool vis[maxn]; int n, m, s, t; int x, y, f, z; int dis[maxn], pre[maxn], last[maxn], flow[maxn]; int maxflow, mincost; struct node { int to, nxt, flow, cost; }edge[maxn<<2]; int head[maxn], cnt; queue<int>q; void addedge(int from, int to, int flow, int cost) { edge[++cnt].to = to; edge[cnt].flow = flow; edge[cnt].cost = cost; edge[cnt].nxt = head[from]; head[from] = cnt; } bool spfa(int s, int t) { memset(dis, 0x7f, sizeof(dis)); memset(flow, 0x7f, sizeof(flow)); ms(vis); q.push(s); vis[s] = 1; dis[s] = 0; pre[t] = -1; while (!q.empty()) { int now = q.front(); q.pop(); vis[now] = 0; for (int i = head[now]; i != -1; i = edge[i].nxt) { if (edge[i].flow > 0 && dis[edge[i].to] > dis[now] + edge[i].cost) { int v = edge[i].to; dis[v] = dis[now] + edge[i].cost; pre[v] = now; last[v] = i; flow[v] = min(flow[now], edge[i].flow); if (!vis[v]) { vis[v] = 1; q.push(v); } } } } return pre[t] != -1; } void mincost_maxflow() { while (spfa(s, t)) { int now = t; maxflow += flow[t]; mincost+=flow[t] * dis[t]; while (now != s) { edge[last[now]].flow -= flow[t]; edge[last[now] ^ 1].flow += flow[t]; now = pre[now]; } } } int main() { //ios::sync_with_stdio(0); memset(head, -1, sizeof(head)); cnt = 1; rdint(m); rdint(n); s = 1000; t = s + 1; for (int i = 1; i <= n; i++)addedge(s, i, 1, 0), addedge(i, s, 0, 0); for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { int tmp; rdint(tmp); for (int k = 1; k <= n; k++) { addedge(i, j*n + k, 1, tmp*k); addedge(j*n + k, i, 0, -tmp * k); } } } for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++)addedge(i*n + j, t, 1, 0), addedge(t, i*n + j, 0, 0); } mincost_maxflow(); printf("%.2lf\n", 1.0*mincost / n); return 0; }
EPFL - Fighting