CF912B New Year's Eve

Since Grisha behaved well last year, at New Year's Eve he was visited by Ded Moroz who brought an enormous bag of gifts with him! The bag contains n sweet candies from the good ol' bakery, each labeled from 1 to n corresponding to its tastiness. No two candies have the same tastiness.

The choice of candies has a direct effect on Grisha's happiness. One can assume that he should take the tastiest ones — but no, the holiday magic turns things upside down. It is the xor-sum of tastinesses that matters, not the ordinary sum!

A xor-sum of a sequence of integers a1, a2, ..., am is defined as the bitwise XOR of all its elements: , here denotes the bitwise XOR operation; more about bitwise XOR can be found here.

Ded Moroz warned Grisha he has more houses to visit, so Grisha can take no more than k candies from the bag. Help Grisha determine the largest xor-sum (largest xor-sum means maximum happiness!) he can obtain.

Input

The sole string contains two integers n and k (1 ≤ k ≤ n ≤ 1018).

Output

Output one number — the largest possible xor-sum.

Examples
Input
Copy
4 3
Output
Copy
7
Input
Copy
6 6
Output
Copy
7
Note

In the first sample case, one optimal answer is 1, 2 and 4, giving the xor-sum of 7.

In the second sample case, one can, for example, take all six candies and obtain the xor-sum of 7.

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 300005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
    ll x = 0;
    char c = getchar();
    bool f = false;
    while (!isdigit(c)) {
        if (c == '-') f = true;
        c = getchar();
    }
    while (isdigit(c)) {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f ? -x : x;
}

ll gcd(ll a, ll b) {
    return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; }

/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
    if (!b) {
        x = 1; y = 0; return a;
    }
    ans = exgcd(b, a%b, x, y);
    ll t = x; x = y; y = t - a / b * y;
    return ans;
}
*/
ll mul(ll a, ll b) {
    ll ans = 0;
    while (b) {
        if (b & 1)ans = (ans + a);
        b /= 2; a += a;
    }
    return ans;
}


ll qpow(ll a, ll b) {
    ll ans = 1;
    
    while (b) {
        if (b % 2)ans = mul(a, ans);
        b /= 2; a = mul(a, a);
    }
    return ans;
}

ll log2(ll x) {
    int cnt = 0;
    ll tmp = 1;
    while (1) {
        if ((tmp << 1) > x)break;
        tmp <<= 1; cnt++;
    }
    return cnt;
}

int main()
{
    //ios::sync_with_stdio(0);
    ll n, k; rdllt(n); rdllt(k);
    ll ans = 0;
    ll tmp = 1;
    int cnt = 0;
    
    if (k == 1)cout << n << endl;
    else {
        ans = 1;
        while (1) {
            if (ans > n)break;
            ans <<= 1;
        }
        cout << ans - 1 << endl;
    }
    return 0;
}

 

posted @ 2018-12-15 15:28  NKDEWSM  阅读(255)  评论(0编辑  收藏  举报