A Simple Problem with Integers BZOJ3212 线段树
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Sample Output4
55
9
15
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
You need to answer all Q commands in order. One answer in a line.
就当练练手了。。
水题一道;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 300005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int n; ll a[maxn]; struct node { ll l, r; ll lazy; ll sum; }tree[maxn<<1]; void pushup(int rt) { tree[rt].sum = tree[rt << 1].sum + tree[rt << 1 | 1].sum; } void build(int l, int r, int rt) { tree[rt].l = l; tree[rt].r = r; tree[rt].lazy = 0; if (l == r) { tree[rt].lazy = 0; tree[rt].sum = a[l]; return; } int mid = (l + r) >> 1; build(l, mid, rt << 1); build(mid + 1, r, rt << 1 | 1); pushup(rt); } void pushdown(int rt) { if (tree[rt].lazy) { tree[rt << 1].sum += (ll)tree[rt].lazy*(tree[rt << 1].r - tree[rt << 1].l + 1); tree[rt << 1 | 1].sum += (ll)tree[rt].lazy*(tree[rt << 1 | 1].r - tree[rt << 1 | 1].l + 1); tree[rt << 1].lazy += tree[rt].lazy; tree[rt << 1 | 1].lazy += tree[rt].lazy; tree[rt].lazy = 0; } } void upd(int l, int r, int rt,ll val) { if (l <= tree[rt].l&&tree[rt].r <= r) { tree[rt].sum += (tree[rt].r - tree[rt].l + 1)*val; tree[rt].lazy += val; return; } pushdown(rt); int mid = (tree[rt].l + tree[rt].r) >> 1; if (l <= mid)upd(l, r, rt << 1, val); if (mid < r)upd(l, r, rt << 1 | 1, val); pushup(rt); } ll query(int l, int r, int rt) { if (l <= tree[rt].l&&tree[rt].r <= r) { return tree[rt].sum; } pushdown(rt); int mid = (tree[rt].r + tree[rt].l) >> 1; ll ans = 0; if (l <= mid)ans += query(l, r, rt << 1); if (mid < r)ans += query(l, r, rt << 1 | 1); return ans; } int main() { //ios::sync_with_stdio(0); rdint(n); int q; rdint(q); for (int i = 1; i <= n; i++)rdllt(a[i]); build(1, n, 1); while (q--) { char op; int a, b; cin >> op; if (op == 'C') { ll v; rdint(a); rdint(b); rdllt(v); upd(a, b, 1, v); } else { rdint(a); rdint(b); cout << query(a, b, 1) << endl; } } return 0; }
EPFL - Fighting