[HNOI2009]梦幻布丁 BZOJ1483 set
题目描述
N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色.
输入输出格式
输入格式:第一行给出N,M表示布丁的个数和好友的操作次数. 第二行N个数A1,A2...An表示第i个布丁的颜色从第三行起有M行,对于每个操作,若第一个数字是1表示要对颜色进行改变,其后的两个整数X,Y表示将所有颜色为X的变为Y,X可能等于Y. 若第一个数字为2表示要进行询问当前有多少段颜色,这时你应该输出一个整数. 0
输出格式:针对第二类操作即询问,依次输出当前有多少段颜色.
输入输出样例
说明
1<=n,m<=100,000; 0<Ai,x,y<1,000,000
用 set 进行暴力处理;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 1000005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int n, m, ans; int fath[maxn], v[maxn]; set<int>st[maxn]; void sol(int a, int b) { set<int>::iterator it; for (it = st[a].begin(); it != st[a].end(); it++) { if (v[*it - 1] == b)ans--; if (v[*it + 1] == b)ans--; st[b].insert(*it); } for (it = st[a].begin(); it != st[a].end(); it++) { v[*it] = b;// 修改为 b } st[a].clear(); } int main() { //ios::sync_with_stdio(0); rdint(n); rdint(m); for (int i = 1; i <= n; i++)rdint(v[i]); for (int i = 1; i <= n; i++) { fath[v[i]] = v[i]; if (v[i] != v[i - 1])ans++; st[v[i]].insert(i); } for (int i = 1; i <= m; i++) { int op; rdint(op); int a, b; if (op == 2)cout << ans << endl; else { rdint(a); rdint(b); if (a == b)continue; if (st[fath[a]].size() > st[fath[b]].size())swap(fath[a], fath[b]); sol(fath[a], fath[b]); } } return 0; }
EPFL - Fighting