过河卒 NOIp 2002 dp
题目描述
棋盘上AAA点有一个过河卒,需要走到目标BBB点。卒行走的规则:可以向下、或者向右。同时在棋盘上CCC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,AAA点(0,0)(0, 0)(0,0)、BBB点(n,m)(n, m)(n,m)(nnn, mmm为不超过202020的整数),同样马的位置坐标是需要给出的。
现在要求你计算出卒从AAA点能够到达BBB点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入输出格式
输入格式:一行四个数据,分别表示BBB点坐标和马的坐标。
输出格式:一个数据,表示所有的路径条数。
输入输出样例
说明
结果可能很大!
一个人问我的,那我就干脆写上吧。。
直接无脑dfs40分,
考虑dp即可;
很容易想到 dp[ i ][ j ]=dp[ i-1 ][ j ]+dp[ i ][ j-1 ];
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#pragma GCC optimize(2) //#include<cctype> //#pragma GCC optimize("O3") using namespace std; #define maxn 700005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int n, m; int Map[100][100]; ll ans; int dx[] = { 1,1,2,2,-1,-1,-2,-2 }; int dy[] = { 2,-2,1,-1,2,-2,1,-1 }; int ddx[] = { 1,0 }; int ddy[] = { 0,1 }; bool check(int x, int y) { return (x >= 0 && x <= n&&y >= 0 && y <= m); } ll dp[100][100]; int main(){ //ios::sync_with_stdio(0); rdint(n); rdint(m); int x, y; rdint(x); rdint(y); Map[x][y] = 1; for (int i = 0; i < 8; i++) { int nx = x + dx[i], ny = y + dy[i]; if (nx >= 0 && nx <= n&&ny >= 0 && ny <= m)Map[nx][ny] = 1; } dp[0][0] = 0; dp[1][0] = 1; dp[0][1] = 1; for (int i = 0; i <= n; i++) { for (int j = 0; j <= m; j++) { if (Map[i][j])continue; if (!Map[i][j + 1]) { dp[i][j + 1] += dp[i][j]; } if (!Map[i + 1][j]) { dp[i + 1][j] += dp[i][j]; } } } cout << dp[n][m] << endl; return 0; }
EPFL - Fighting