【模板】文艺平衡树(Splay) 区间翻转 BZOJ 3223
您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1
N,M<=100000
Sample Output4 3 2 1 5 Hint
Input
第一行为n,m n表示初始序列有n个数,这个序列依次是(1,2……n-1,n) m表示翻转操作次数
接下来m行每行两个数[l,r] 数据保证 1<=l<=r<=n
输出一行n个数字,表示原始序列经过m次变换后的结果
Sample Input5 3 1 3 1 3 1 4Splay Tree ,和上道题一样,我们的kth 返回的序列的第k个数;
然后中序遍历即可得到我们翻转后的序列;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#pragma GCC optimize(2) //#include<cctype> //#pragma GCC optimize("O3") using namespace std; #define maxn 100005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } struct splay { int fa, ch[2], size; int lazy, rev, maxx, value; }Sp[maxn]; int n, m, root, a[maxn]; void pushup(int rt) { Sp[rt].size = Sp[Sp[rt].ch[0]].size + Sp[Sp[rt].ch[1]].size + 1; Sp[rt].maxx = max(Sp[rt].value, max(Sp[Sp[rt].ch[0]].maxx, Sp[Sp[rt].ch[1]].maxx)); } void pushdown(int rt) { if (Sp[rt].lazy) { if (Sp[rt].ch[0]) { Sp[Sp[rt].ch[0]].lazy += Sp[rt].lazy; Sp[Sp[rt].ch[0]].maxx += Sp[rt].lazy; Sp[Sp[rt].ch[0]].value += Sp[rt].lazy; } if (Sp[rt].ch[1]) { Sp[Sp[rt].ch[1]].lazy += Sp[rt].lazy; Sp[Sp[rt].ch[1]].maxx += Sp[rt].lazy; Sp[Sp[rt].ch[1]].value += Sp[rt].lazy; } Sp[rt].lazy = 0; } if (Sp[rt].rev) { if (Sp[rt].ch[0]) { Sp[Sp[rt].ch[0]].rev ^= 1; swap(Sp[Sp[rt].ch[0]].ch[0], Sp[Sp[rt].ch[0]].ch[1]); } if (Sp[rt].ch[1]) { Sp[Sp[rt].ch[1]].rev ^= 1; swap(Sp[Sp[rt].ch[1]].ch[0], Sp[Sp[rt].ch[1]].ch[1]); } Sp[rt].rev = 0; } } int id(int x) { return Sp[Sp[x].fa].ch[1] == x; } void link(int son, int fa, int k) { Sp[son].fa = fa; Sp[fa].ch[k] = son; } void rotate(int x) { int y = Sp[x].fa; int z = Sp[y].fa; int yk = id(x); int zk = id(y); int b = Sp[x].ch[yk ^ 1]; link(b, y, yk); link(y, x, yk ^ 1); link(x, z, zk); pushup(y); pushup(x); } void SPLAY(int x, int aim) { while (Sp[x].fa != aim) { int y = Sp[x].fa; int z = Sp[y].fa; if (z != aim)id(x) == id(y) ? rotate(y) : rotate(x); rotate(x); } if (aim == 0)root = x; } int kth(int k) { int now = root; while (1) { pushdown(now); int left = Sp[now].ch[0]; if (Sp[left].size + 1 < k) { k -= Sp[left].size + 1; now = Sp[now].ch[1]; } else if (Sp[left].size >= k)now = left; else return now; } } int build(int l, int r, int fa) { if (l > r)return 0; if (l == r) { Sp[l].fa = fa; Sp[l].maxx = Sp[l].value = a[l]; Sp[l].size = 1; return l; } int mid = (l + r) >> 1; Sp[mid].ch[0] = build(l, mid - 1, mid); Sp[mid].ch[1] = build(mid + 1, r, mid); Sp[mid].value = a[mid]; Sp[mid].fa = fa; pushup(mid); return mid; } int split(int l, int r) { l = kth(l); r = kth(r + 2); SPLAY(l, 0); SPLAY(r, l); return Sp[Sp[root].ch[1]].ch[0]; } void upd(int l, int r, int v) { int now = split(l, r); Sp[now].lazy += v; Sp[now].maxx += v; Sp[now].value += v; pushup(Sp[root].ch[1]); pushup(root); } void Reverse(int l, int r) { int now = split(l, r); Sp[now].rev ^= 1; swap(Sp[now].ch[0], Sp[now].ch[1]); pushup(Sp[root].ch[1]); pushup(root); } int query(int l, int r) { return Sp[split(l, r)].maxx; } void dfs(int rt) { pushdown(rt); if (Sp[rt].ch[0])dfs(Sp[rt].ch[0]); if (Sp[rt].value != inf && Sp[rt].value != -inf) { cout << Sp[rt].value << ' '; } if (Sp[rt].ch[1])dfs(Sp[rt].ch[1]); } int main() { //ios::sync_with_stdio(0); rdint(n); rdint(m); for (int i = 2; i <= n + 1; i++)a[i] = i - 1; a[1] = -inf; a[n + 2] = inf; root = build(1, n + 2, 0); while (m--) { int l, r; rdint(l); rdint(r); Reverse(l, r); } dfs(root); cout << endl; return 0; }
EPFL - Fighting