Halum UVA - 11478 差分约束
输入输出格式
输入格式:
输出格式:
输入输出样例
输入样例#1: 复制
2 1 1 2 10 2 1 1 2 -10 3 3 1 2 4 2 3 2 3 1 5 4 5 2 3 4 4 2 5 3 4 2 3 1 0 1 2 -1
输出样例#1: 复制
Infinite Infinite 3 1
最小值最大化-----> 二分答案转化为判定;
假设 i--->j 有一条权值为 wgt 的边,
那么我们操作后,假设此时我们要判定的答案为 mid;
∴ 应有 wgt + x[ i ]- x[ j ]>=mid;
其中 x[ i ] 表示在 i 点的操作值,
即: x[ j ]<=x[ i ]+ wgt - mid;
用差分约束解决;
判断是否有解判断是否存在环即可;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#pragma GCC optimize(2) //#include<cctype> //#pragma GCC optimize("O3") using namespace std; #define maxn 100005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int n, m; int fm[maxn], To[maxn], wgt[maxn]; struct node { int v, w; node(){} node(int v,int w):v(v),w(w){} }; vector<node>vc[maxn]; int dis[maxn]; bool vis[maxn], inQueue[maxn]; int flag; void spfa(int x) { if (flag)return; vis[x] = 1; inQueue[x] = 1; int Siz = vc[x].size(); for (int i = 0; i < Siz; i++) { int v = vc[x][i].v; if (dis[v] > dis[x] + vc[x][i].w) { dis[v] = dis[x] + vc[x][i].w; if (!inQueue[v]) { spfa(v); } else { flag = 1; return; } } } inQueue[x] = 0; } bool check(int x) { flag = 0; ms(inQueue); ms(vis); memset(dis, 0x3f, sizeof(dis)); for (int i = 1; i <= n; i++)vc[i].clear(); for (int i = 1; i <= m; i++) { vc[fm[i]].push_back(node(To[i], wgt[i] - x)); } for (int i = 1; i <= n; i++) { if (vis[i])continue; dis[i] = 0; spfa(i); if (flag)break; } if (flag)return false; else return true; } int main() { //ios::sync_with_stdio(0); while (cin >> n >> m) { for (int i = 1; i <= m; i++) { rdint(fm[i]); rdint(To[i]); rdint(wgt[i]); } int l = 1, r = 1e5 + 1; int ans = 0; while (l <= r) { int mid = (l + r) / 2; if (check(mid))l = mid+1, ans = mid; else r = mid - 1; } if (ans <= 0)cout << "No Solution" << endl; else if (ans >= 50000)cout << "Infinite" << endl; else cout << ans << endl; } return 0; }
EPFL - Fighting