[CEOI2008]order BZOJ1391 网络流
题目描述
有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成。 现在给出这些参数,求最大利润
输入输出格式
输入格式:第一行给出 N,M(1<=N<=1200,1<=M<=1200) 下面将有N组数据。
每组数据第一行给出完成这个任务能赚到的钱(其在[1,5000])及有多少道工序
接下来若干行每行两个数,分别描述完成工序所需要的机器编号及租用它的费用(其在[1,20000]) 最后M行,每行给出购买机器的费用(其在[1,20000])
输出格式:最大利润
输入输出样例
输入样例#1:
复制
2 3 100 2 1 30 2 20 100 2 1 40 3 80 50 80 110
输出样例#1: 复制
50
建立源点st与汇点ed;
类比于 最大权闭合子图;
st 与任务连边,权值为所能赚的钱;
ed 与机器相连,表示购买的花费;
但还有一个限制就是可以租用机器;
在最大权闭合子图中,如果没有该限制,其连边应该为inf的容量;
那么考虑租用,将任务与机器的连边inf改为租金即可;
租用机器的操作只与该任务有关,而与其他无关,所以改成 moneyRent即可;
luogu上面我加了O2优化以及快读才过,不知道我这个dinic为啥会T(已加了当前弧优化还是T)
测试点信息
#1 AC 22ms/24208KB
#2 AC 14ms/26064KB
#3 AC 24ms/24096KB
#4 AC 21ms/24200KB
#5 AC 14ms/25788KB
#6 AC 24ms/24224KB
#7 AC 21ms/24184KB
#8 AC 11ms/24120KB
#9 AC 24ms/24192KB
#10 AC 24ms/24212KB
#11 AC 14ms/26096KB
#12 AC 24ms/24336KB
#13 AC 20ms/24104KB
#14 AC 12ms/24964KB
#15 AC 747ms/39924KB
#16 AC 489ms/33560KB
#17 AC 853ms/64272KB
#18 AC 716ms/39828KB
#19 AC 872ms/69156KB
#20 AC 703ms/69504KB
由几个点都接近900ms了,orz;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> #pragma GCC optimize(2) //#include<cctype> //#pragma GCC optimize("O3") using namespace std; #define maxn 3000005 #define inf 0x3f3f3f3f #define INF 9999999999 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-3 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } ll sqr(ll x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans; } int n, m; int st, ed; struct node { int u, v, nxt, w; }edge[maxn<<1]; int head[maxn], cnt; void addedge(int u, int v, int w) { edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = w; edge[cnt].nxt = head[u]; head[u] = cnt++; } int rk[maxn]; int bfs() { queue<int>q; ms(rk); rk[st] = 1; q.push(st); while (!q.empty()) { int tmp = q.front(); q.pop(); for (int i = head[tmp]; i != -1; i = edge[i].nxt) { int to = edge[i].v; if (rk[to] || edge[i].w <= 0)continue; rk[to] = rk[tmp] + 1; q.push(to); } } return rk[ed]; } int dfs(int u, int flow) { if (u == ed)return flow; int add = 0; for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) { int v = edge[i].v; if (rk[v] != rk[u] + 1 || !edge[i].w)continue; int tmpadd = dfs(v, min(edge[i].w, flow - add)); if (!tmpadd) { rk[v] = -1; continue; } edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd; } return add; } ll ans; void dinic() { while (bfs())ans += dfs(st, inf); } int main() { //ios::sync_with_stdio(0); memset(head, -1, sizeof(head)); rdint(n); rdint(m); st = 0; ed = n + m + 1; int sum = 0; for (int i = 1; i <= n; i++) { int moy, num; moy = rd(); sum += moy; addedge(st, i, moy); addedge(i, st, 0); //rdint(num); num = rd(); for (int j = 0; j < num; j++) { int ID; ID = rd(); moy = rd(); //rdint(ID); rdint(moy); addedge(i, n + ID, moy); addedge(n + ID, i, 0); } } for (int i = 1; i <= m; i++) { int moy;// rdint(moy); moy = rd(); addedge(n + i, ed, moy); addedge(ed, n + i, 0); } dinic(); printf("%d\n", sum - ans); return 0; }
EPFL - Fighting