Loading

YOLOX输出格式

网络原始输出

output=torch.cat([reg_output,obj_output.sigmoid(),cls_output.sigmoid()],1)

https://github.com/Megvii-BaseDetection/YOLOX/blob/16d5a5f3dda342fd1df1d9b5e70c0c811dde1273/yolox/models/yolo_head.py#L188-L190

size: torch.Size([1, 23625, 6])

  • 1是batch维度
  • 23625是结果数量,不同层特征图的grid单元总数
  • 6对应输出[x,y,w,h,obj,cls]

demo输出

在官方的demo代码中,结果经过了后处理,输出结果为一个列表

https://github.com/Megvii-BaseDetection/YOLOX/blob/f15f19358c397197ad9e0361a28b7cad903b28c7/yolox/utils/boxes.py#L32-L38

box_corner = prediction.new(prediction.shape)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]

outputs = [tensor([[ 6.8627e+02...ackward0>)]

outputs[0] = 
tensor([[ 6.8627e+02,  2.4433e+02,  8.2713e+02,  6.3706e+02,  9.9891e-01,
          9.5560e-01,  0.0000e+00],
        [ 3.9175e+02,  2.7812e+02,  4.6796e+02,  4.9000e+02,  9.9802e-01,
          9.4998e-01,  0.0000e+00],
        [ 4.7491e+02,  2.6894e+02,  6.3671e+02,  7.3143e+02,  9.9751e-01,
          9.5015e-01,  0.0000e+00],
        [ 3.0302e+02,  2.8112e+02,  3.8625e+02,  4.9150e+02,  9.9783e-01,
          9.4418e-01,  0.0000e+00],
        [ 1.1320e+03,  2.3938e+02,  1.2314e+03,  4.8684e+02,  9.9645e-01,
          9.4138e-01,  0.0000e+00],
        [ 3.6814e+01,  2.6460e+02,  1.2008e+02,  4.6737e+02,  9.9701e-01,
          9.4038e-01,  0.0000e+00],
        [ 1.2432e+03,  2.6789e+02,  1.3237e+03,  4.7605e+02,  9.9576e-01,
          9.3546e-01,  0.0000e+00],
        [-8.3586e-02,  3.2619e+02,  6.1085e+01,  4.6840e+02,  9.9744e-01,
          9.2520e-01,  0.0000e+00],
        [ 4.3638e+02,  2.7471e+02,  4.9260e+02,  4.2946e+02,  9.9574e-01,
          9.2373e-01,  0.0000e+00],
        [ 1.0945e+03,  2.4199e+02,  1.1606e+03,  4.2709e+02,  9.9511e-01,
          8.9923e-01,  0.0000e+00],
        [ 1.1426e+02,  3.0380e+02,  1.7058e+02,  4.6495e+02,  9.9303e-01,
          8.9652e-01,  0.0000e+00],
        [ 6.5720e+02,  2.5148e+02,  7.2053e+02,  4.2820e+02,  9.9336e-01,
          8.8630e-01,  0.0000e+00],
        [ 2.7073e+02,  2.8161e+02,  3.1013e+02,  3.8078e+02,  9.7686e-01,
          8.8360e-01,  0.0000e+00],
        [ 8.1564e+00,  2.7415e+02,  5.2220e+01,  3.9116e+02,  9.9395e-01,
          8.6715e-01,  0.0000e+00],
        [ 8.5601e+02,  2.6363e+02,  9.1256e+02,  4.2346e+02,  9.8111e-01,
          8.6075e-01,  0.0000e+00],
        [ 2.2775e+02,  2.7339e+02,  2.6607e+02,  3.8977e+02,  9.8500e-01,
          8.5654e-01,  0.0000e+00],
        [ 1.5804e+02,  2.8275e+02,  1.8711e+02,  3.6177e+02,  9.6338e-01,
          8.5498e-01,  0.0000e+00],
        [ 1.9708e+02,  2.7264e+02,  2.2979e+02,  3.7127e+02,  9.4627e-01,
          8.1565e-01,  0.0000e+00],
        [ 8.0344e+02,  2.5964e+02,  8.6070e+02,  4.1845e+02,  8.3828e-01,
          9.1158e-01,  0.0000e+00],
        [-6.3595e+00,  2.7873e+02,  2.1084e+01,  3.6418e+02,  9.3673e-01,
          8.1081e-01,  0.0000e+00],
        [ 1.8374e+02,  2.8833e+02,  2.0989e+02,  3.6705e+02,  8.8031e-01,
          8.2443e-01,  0.0000e+00],
        [ 3.1365e+02,  2.7549e+02,  3.4552e+02,  3.6257e+02,  9.1754e-01,
          7.8790e-01,  0.0000e+00],
        [ 5.7619e+02,  2.6232e+02,  6.8083e+02,  6.1091e+02,  6.7481e-01,
          8.2714e-01,  0.0000e+00],
        [ 9.7696e+01,  2.8851e+02,  1.2155e+02,  3.5633e+02,  6.1227e-01,
          7.4170e-01,  0.0000e+00],
        [ 3.7402e+02,  2.6915e+02,  4.1399e+02,  3.8024e+02,  4.9557e-01,
          7.4468e-01,  0.0000e+00],
        [ 1.3349e+03,  2.5904e+02,  1.3920e+03,  4.2326e+02,  4.2641e-01,
          7.8941e-01,  0.0000e+00]], device='cuda:0', grad_fn=<IndexBackward0>)

outputs[0].shape = torch.Size([26, 7])

结果格式为[left,top,right,bottom,obj_conf,cls_conf,cls_id]

outputs[0][0] = tensor([686.2659, 244.3278, 827.1260, 637.0627,   0.9989,   0.9556,   0.0000],
posted @ 2022-12-26 11:01  ZXYFrank  阅读(1045)  评论(0编辑  收藏  举报