区间合并

总时间限制: 
1000ms
 
内存限制: 
65536kB
描述

给定 n 个闭区间 [ai; bi],其中i=1,2,...,n。任意两个相邻或相交的闭区间可以合并为一个闭区间。例如,[1;2] 和 [2;3] 可以合并为 [1;3],[1;3] 和 [2;4] 可以合并为 [1;4],但是[1;2] 和 [3;4] 不可以合并。

我们的任务是判断这些区间是否可以最终合并为一个闭区间,如果可以,将这个闭区间输出,否则输出no。

输入
第一行为一个整数n,3 ≤ n ≤ 50000。表示输入区间的数量。
之后n行,在第i行上(1 ≤ i ≤ n),为两个整数 ai 和 bi ,整数之间用一个空格分隔,表示区间 [ai; bi](其中 1 ≤ ai ≤ bi ≤ 10000)。
输出
输出一行,如果这些区间最终可以合并为一个闭区间,输出这个闭区间的左右边界,用单个空格隔开;否则输出 no。
样例输入
5
5 6
1 5
10 10
6 9
8 10
样例输出
1 10

解题思路:找到区间的左右边界,从左边界left+0.5遍历,在某个小区间内,距离s加1,如果最终s==right-left,则最终可以合并一个闭区间。
#include <cstdio>

using namespace std;

int main(){
    int a[50000], b[50000] , n, i, left = 0, right = 0, p, s = 0;
    double l;

    while(~scanf("%d", &n)){
        for(i = 0; i < n; i++){
            scanf("%d %d" &a[i], &b[i]);
            if(i = 0)
                left = a[i];
            else if(a[i] < left)
                left = a[i];
            if(b[i] > right)
                right = b[i];
        }
        for(l = left+0.5; l < right; l=l+1){
            p = 0;
            for(i = 0; i < n; i++){
                if(l > a[i] && l < b[i]){
                    p++;
            break;//在区间内
          } }
if(p>0) s++; } if(s = right-left) printf("%d %d\n",left,right); else printf("no!"); } return 0; }

 

posted @ 2015-03-24 13:07  neuzxy  阅读(319)  评论(0编辑  收藏  举报