流媒体 4——数字电视基础

1.模拟彩色电视制

                                     

2.电视扫描和同步

2.1 扫描

  电视技术利用光电转换原理实现光学图像到电视信号变换,这一转换过程通常是在摄像机中完成的。当被摄景物通过摄像机镜头成像在摄像管的光电导层时,光电靶上不同点随照度不同激励出数目不等的光电子,从而引起不同的附加光电导产生不同的电位起伏,形成与光像对应的电图像。利用人眼的视觉惰性,在发送端可以将代表图像中像素的物理量按一定顺序一个一个地传送,而在接收端再按同样的规律重显原图像。只要这种顺序进行的足够快,人眼就会感觉图像上在同时发亮。在电视技术中,将这种传送图像的既定规律称为扫描。摄像管光电导层中形成的电图像在电子束的扫描下顺序地接通每一个点,并连续地把它们的亮度变化转换为电信号;扫描得到的电信号经过单一通道传输后,再用电子束扫描具有电光转换特性的荧光屏,从电信号转换成光图像。

电视系统扫描原理

  在通常情况下,目前电视系统普遍使用的电真空摄像和显像器件均采用电子束扫描来实现光电和电光转换;而随着CCD摄像机和平板显示器件的投入使用,利用各种脉冲数字电路便可实现上述转换。阴极射线管(CRT)扫描处理的示意图,其中视频信号由亮度(luma)和色度(chroma)信号分量组成,分量视频分别送出亮度和色度信号。

 

阴极射线管(CRT)扫描处理示意图

  扫描方式有逐行扫描和隔行扫描两种。

<1>. 逐行扫描

  电子束从左至右、从上而下逐行依次扫描的方式称为逐行扫描。电子束顺序扫描屏幕所形成的直线状亮点轨迹称为光栅

(1)行扫描:电子束沿水平方向的扫描称为行扫描。其中从左至右的扫描称为行扫描正程,简称行正扫,(a)图中实线所示。从右至左的扫描称为行扫描逆程,简称行回扫。如图(a)中虚线所示。行扫描正程时间长,逆程时间短。显然,对于每一幅图像来说,扫描行数越多,对图像的分解力越高,图像越细腻;但同时电视信号的带宽也就越宽,对信道的要求也越高。

(2) 帧扫描:电子束沿垂直方向的扫描称为帧扫描。其中从上至下的扫描称为帧扫描正程,简称帧正扫,从下至上的扫描称为帧扫描逆程,简称帧回扫。图 (a)所示为帧扫描正程的扫描轨迹,图(b)为帧扫描逆程的回扫轨迹。同样,帧扫描正程时间远大于帧扫描逆程时间。

  实际上,行扫描和帧扫描是同时进行的,即电子束在进行水平方向扫描的同时又在垂直方向移动,则电子束的运动轨迹为水平和垂直两个方向的合运动。由于电子束水平方向的扫描速度远大于垂直方向的速度,这样在荧光屏上形成了一条条略微斜向下的水平亮线,几百行密集的扫描亮线构成一个均匀栅状发光面,就是所谓的光栅。逐行扫描一帧即为一场。逐行扫描存在的缺点:要使图像连续而不产生闪烁现象,则需每秒换帧50次,即帧频为50Hz,但图像信号的频带宽度太宽,使电视设备复杂化。为了压缩图像信号的带宽,同时又能克服闪烁现象,借鉴电影技术,人们提出了隔行扫描方式。目前的广播电视采用隔行扫描

                                            逐行扫描光栅示意图 

<2>. 隔行扫描

  隔行扫描是将一帧图像分成两场来扫描,第一场扫奇数行,称为奇数场,第二场再扫偶数行称为偶数场。奇数场和偶数场图像镶嵌在一起形成—幅完整的图像

 隔行扫描重现图像示意图 

  隔行扫描的光栅如图所示,电子束扫完第1行后回到第3行开始的位置接着扫,如图(a所示,然后在第5、7、……,行上扫,直到最后一行。奇数行扫完后接着扫偶数行(图b)),这样就完成了一帧(frame)的扫描(图c))。由此可以看到,隔 行扫描的一帧图像由两部分组成:一部分是由奇数行组成,称奇数场,另一部分是由偶数行组成,称为偶数场,两场合起来组成一帧。因此在隔行扫描中,无论是摄像机还是显示器,获取或显示一幅图像都要扫描两遍才能得到一幅完整的图像。

                                              隔行扫描光栅示意图

 

 

  在隔行扫描中、扫描的行数必须是奇数。如上所述,一帧画面分两场,第一场扫描总行数的一半,第二场扫描总行数的另一半。隔行扫描要求第一场结束于最后一行的 一半,不管电子束如何折回,它必须回到显示屏顶部的中央,这样就可以保证相邻的第二场扫描恰好嵌在第一场各扫描线的中间。正是这个原因,才要求总的行数必须是奇数。隔行扫描为使传送活动图像有连续感而不产生闪烁,需每秒扫描50场,即场频为50Hz。而两场为一帧,则每秒扫描25帧画面,即帧频为25Hz,从而降低了帧频,压缩了图像信号频带宽度,并克服了闪烁现象。

  每秒钟扫描多少行称为行频fH;每秒钟扫描多少场称为场频fc;每秒扫描多少帧称帧频fF。fc和fF是两个不同的概念。

  黑白电视和彩色电视都用隔行扫描,而计算机显示图像时一般都采用非隔行扫描。

 

2.2 .扫描术语

 

行频 (Horizontal Scanning Frequency)又称为“水平扫描频率”,是指每秒在屏幕上从左到右扫描的次数,单位是Hz;

场频(Vertical Scanning Frequency)又称为“垂直扫描频率”,是指每秒钟屏幕刷新的次数,单位是Hz。行频和场频是液晶电视的基本电器性能。

行频与分辨率之间是有一定的关系:用Hr表示水平分辨率,Vr表示垂直分辨率,Re表示自动刷新率,Hf表示行频,则它们之间的关系是:Hf = Vr×Rr×K(K为一常数值)。行频分别与场频、分辨率成正比,场频越高或者水平线数越多,要求的行频也越高。反过来说,行频越高,则允许显示器分辨率 可变范围越大,场频也越高,显示器越好。

目前在市场上销售的显示器,说明书上无一例外地给出点 节距、行频、场频及带宽等技术指 标。例如,PHILIPS 105A 15英寸显示器的点节距为0.28mm、行频(水平扫描频率)为30 ~70KHz、场频(垂直扫描频率)为55~120Hz、带宽为 108MHz;三星500p 15英寸显示器点节距为0.28mm、行频为30 ~69KHz、场频为50~160Hz、带宽为110MHz,这些参数反映了显示器的内在质量。

显像管电子枪发射的电子束在行偏转磁场的作用下从荧屏左上角开始,向右作水平扫描(称为行扫描正程),扫完一行后迅速又回扫到左边(称为行扫描逆程)。由于场偏转磁场的作用,在 离第一行稍低处开始第二行扫描,如此逐次扫描直至屏幕的右下角,便完成了整个屏幕一帧(即一幅画面)的显示,之后,电子束重又回扫到左上角开始新一帧的扫描。完成一行水平扫 描的时间,确切地说应是从第一行开始至第二行开始的间隔时 间(行扫描正程时间+行扫描逆程时间)称行周期,其倒数即 为行频FH。同样,完成整个屏幕扫描的时间(场扫描正程时 间+场扫描逆程时间)称场周期,其倒数即为场频FV。

早期的显示器是采用隔行扫描方式,即先扫描奇数行1、 3、5……直至终了(奇场),再扫偶数行2、4、6……(偶场), 奇场与偶场合在一起才组成完整的一帧图像,帧频(刷新率) 是场频的一半。现在绝大多数的电视机仍采用这种扫描方式, 它的优点是节省频带,缺点是刷新率低,图像有闪烁感,近距观看尤其明显,易使眼睛疲劳,因此计算机显示器现在已经不采用这种扫描方式,代之以逐行顺序扫描。一场结束,也就是一帧图像再现,场频与帧频已经统一。早期显示器的场频通常与电网频率一致,即50Hz或60Hz(即每秒显示50幅或60幅图像), 这是因为当时的电源及滤波技术限 制,可能因滤波不良造成非同步干扰,这种干扰表现为屏幕上滚动的黑色横条,其滚动频率为电网频率与场频之间的差拍。现在这个问题已经解决,场频不必与电网频率同步,一般取60~70Hz之间,高的达100多Hz,85Hz是VESA标准的刷新速率,用85Hz以上的刷新率显示图像才无闪烁感。

电视机采用的是隔行扫描,一帧是指所有的数据信息,一场是指电视屏幕所容纳的数据信息,所以电视上的一场信息数据其实只有半帧。因此完成一帧数据所需要的时间其实等于两场数据所需要时间,因此,2帧频=1场频

 

 

 

 

 

 

3.电视图像数字化

  模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV 信号方式,而计算机工作在RGB 空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。

  模拟视频一般采用分量数字化方式,先把复合视频信号中的亮度和色度分离,得到YUV 或YIQ 分量,然后用三个模/数转换器对三个分量分别采样并进行数字化,最后再转换成RGB 空间

  对彩色电视图像进行采样时,可以采用两种采样方法。一种是使用相同的采样频率对图像的亮度信号(Y)和色差信号(Cr,Cb)进行采样,另一种是对亮度信号和色差信号分别采用不同的采样频率进行采样。如果对色差信号使用的采样频率比对亮度信号使用的采样频率低,这种采样就称为图像子采样(subsampling)。由于人的视觉对亮度信号的敏感度高于对色差的敏感度,这样做利用人的视觉特性来节省信号的带宽和功率,通过选择合适的颜色模型,可以使两个色差信号所占的带宽明显低于Y 的带宽,而又不明显影响重显彩色图像的
观看。
    目前使用的子采样格式有如下几种:
    (1) 4:4:4 这种采样格式不是子采样格式,它是指在每条扫描线上每4 个连续的采样点取4个亮度Y 样本、4个红色差Cr 样本和4个蓝色差Cb 样本,这就相当于每个像素用3个样本表示。
    (2) 4:2:2 这种子采样格式是指在每条扫描线上每4个连续的采样点取4个亮度Y 样本、2个红色差Cr 样本和2个蓝色差Cb 样本,平均每个像素用2个样本表示。
    (3) 4:1:1 这种子采样格式是指在每条扫描线上每4个连续的采样点取4个亮度Y 样本、1个红色差Cr 样本和1个蓝色差Cb 样本,平均每个像素用1.5个样本表示。
    (4) 4:2:0 这种子采样格式是指在水平和垂直方向上每2个连续的采样点上取2个亮度Y 样本、1个红色差Cr 样本和1个蓝色差Cb 样本,平均每个像素用1.5个样本表示。

补充:——亮度信号与色差信号

  为了传送彩色图像,从兼容的角度出发,彩色电视系统中应传送一个只反映图像亮度的亮度信号,以Y表示,其特性应与黑白电视信号相同。同时还需传送色度信息,常 以 F 表示。根据三基色原理,必须传送反映R、G、B三个基色的信息。亮度方程Y = 0.30R + 0.59G + 0.11B告诉我们在Y、R、 G、B这4个变量中,只有3个是独立的。所以只要在传送Y 的同时,再传送三个基色中的任意两个即可。注:(此处的亮度信号Y、基色信号R、G、B指的是 已经过光电转换后的电信号。)由于每个基色信息中都含有亮度信息,如果直接传送基色信号,已传送的亮度信号Y(为各基色亮度总和)与 所选出的两个基色所包含的亮度参量就重复了,因而使得基色与亮度之间的相互干扰也会十分严重。所以通常选择不反映亮度信息的信号传送色度信息,例如基色信 号与亮度信号相减所得到的色差信号(R-Y)、(G-Y)和(B-Y),可从中选取两个代表色度信息。因此,在彩色电视系统中,为传送彩色图像,选用了一 个亮度信号和两个色差信号。

 

4.数字电视

 

posted @ 2015-06-25 11:54  zxqstrong  阅读(316)  评论(0编辑  收藏  举报