二分查找与 bisect 模块

Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n)。对于大数据量,则可以用二分查找进行优化。二分查找要求对象必须有序,其基本原理如下:

  • 1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;
  • 2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
  • 3.如果在某一步骤数组为空,则代表找不到。

二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。

我们分别用递归和循环来实现二分查找:

def binary_search_recursion(lst, value, low, high):
    if high < low:
        return None
    mid = (low + high)//2
    if lst[mid] > value:
        return binary_search_recursion(lst, value, low, mid - 1)
    elif lst[mid] < value:
        return binary_search_recursion(lst, value, mid + 1, high)
    else:
        return mid


def binary_search_loop(lst, value):
    low, high = 0, len(lst) - 1
    while low <= high:
        mid = (low + high) //2
        if lst[mid] < value:
            low = mid + 1
        elif lst[mid] > value:
            high = mid - 1
        else:
            return mid
    return None

接着对这两种实现进行一下性能测试:

if __name__ == "__main__":
    import random

    lst = [random.randint(0, 10000) for _ in range(100000)]
    lst.sort()


    def test_recursion():
        binary_search_recursion(lst, 999, 0, len(lst) - 1)


    def test_loop():
        binary_search_loop(lst, 999)


    import timeit

    t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
    t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")

    print("Recursion:", t1.timeit())
    print("Loop:", t2.timeit())

执行结果如下:

 

Recursion: 3.6007582582639275
Loop: 2.6299082704597954

 

可以看出循环方式比递归效率高。

Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。

下面是一个简单的使用示例:

import bisect
import random
print('New  Pos Contents\n---  --- --------')
l = []
for i in range(1, 15):
    r = random.randint(1, 100)
    position = bisect.bisect(l, r)
    bisect.insort(l, r)
    print('%3d  %3d' % (r, position), l)

输出结果

New  Pos Contents
---  --- --------
 31    0 [31]
  7    0 [7, 31]
 54    2 [7, 31, 54]
 39    2 [7, 31, 39, 54]
 70    4 [7, 31, 39, 54, 70]
 63    4 [7, 31, 39, 54, 63, 70]
 98    6 [7, 31, 39, 54, 63, 70, 98]
 11    1 [7, 11, 31, 39, 54, 63, 70, 98]
 84    7 [7, 11, 31, 39, 54, 63, 70, 84, 98]
 75    7 [7, 11, 31, 39, 54, 63, 70, 75, 84, 98]
 33    3 [7, 11, 31, 33, 39, 54, 63, 70, 75, 84, 98]
  2    0 [2, 7, 11, 31, 33, 39, 54, 63, 70, 75, 84, 98]
 16    3 [2, 7, 11, 16, 31, 33, 39, 54, 63, 70, 75, 84, 98]
 66    9 [2, 7, 11, 16, 31, 33, 39, 54, 63, 66, 70, 75, 84, 98]

Bisect模块提供的函数有:

  • bisect.bisect_left(a,x, lo=0, hi=len(a)) :

查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。

  • bisect.bisect_right(a,x, lo=0, hi=len(a))
  • bisect.bisect(a, x,lo=0, hi=len(a)) :

这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。

  • bisect.insort_left(a,x, lo=0, hi=len(a)) :

在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。

  • bisect.insort_right(a,x, lo=0, hi=len(a))
  • bisect.insort(a, x,lo=0, hi=len(a)) :

和 insort_left 类似,但如果 x 已经存在,在其右边插入。

def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
    i = bisect.bisect(breakpoints, score)
    return grades[i]
print([grade(score) for score in [33, 99, 77, 70, 89, 90, 100]])

执行结果

['F', 'A', 'C', 'C', 'B', 'A', 'A']

同样,我们可以用 bisect 模块实现二分查找:

def binary_search_bisect(lst, x):
    from bisect import bisect_left
    i = bisect_left(lst, x)
    if i != len(lst) and lst[i] == x:
        return i
    return None

执行结果如下

Recursion: 3.6801888509377982
Loop: 2.557316803338421
Bisect 1.7585010485425743
可以看到其比循环实现略快,比递归实现差不多要快一半。

Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:

import numpy as np
from bisect import bisect_left, bisect_right
data = [2, 4, 7, 9]
bisect_left(data, 4)
np.searchsorted(data, 4)
bisect_right(data, 4)
np.searchsorted(data, 4, side='right')

numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:

numpy.searchsorted 可以同时搜索多个值:

import numpy as np
np.searchsorted([1,2,3,4,5], 3)

np.searchsorted([1,2,3,4,5], 3, side='right')

np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])

 

 

posted @ 2018-08-28 20:22  显示名称已经被使用  阅读(216)  评论(0编辑  收藏  举报