解释--全连接层输入大小固定

  在刚接触目标检测时,学习到R-CNN时,为了使全连接层的输入大小固定,作者将卷积神经网络的输出经过warp操作,使得输入大小固定,那问题来了,为什么全连接网络的输入需要固定,而卷积神经网络的大小可以是任意的。

                  

  大家都知道, ,全连接神经网络结构一旦固定,需要学习的参数w是固定的,例如 输入图像是 28*28 = 784,w 的转置= (500,784),===>  输出矩阵的shape:(500,1),如果输入图像的大小改变,但是w的大小并不会改变,因此,无法计算。

  而对于卷积神经网络,卷积核的每个元素表示参数w,不论输入图像大小怎么改变,卷积核大小是不变的,并且通过卷积操作,每次都能训练到卷积核中的元素,所以卷积神经网络的输入图像的大小是任意的。

 

 

 

posted on 2019-05-16 10:46  天道酬勤、  阅读(3585)  评论(0编辑  收藏  举报

导航