poj2594 Treasure Exploration 二分匹配之最小路径覆盖+传递闭包

http://poj.org/problem?id=2594

太经典了,最小路径覆盖之变形!如果题目中有暗示此图无环且路径是单向的话,必然是最小路径覆盖无疑!
这个题的题目意思和那个伞兵题差不多,但是伞兵走过的路径是可以交叉的,这样我们先做一个传递闭包,然后再连边做最小路径覆盖即可。

Source Code

Problem: 2594   User: 541780774
Memory: 652K   Time: 1110MS
Language: G++   Result: Accepted


Source Code

#include<stdio.h>   #include<stdlib.h>   #include<string.h>      int nx, ny;             // X的點數目、Y的點數目    int mx[501], my[501];   // X各點的配對對象、Y各點的配對對象    bool vy[501];           // 紀錄Graph Traversal拜訪過的點    bool adj[501][501];     // 精簡過的adjacency matrix       // 以DFS建立一棵交錯樹    bool DFS(int x)    {        for (int y=0; y<ny; ++y)            if (adj[x][y] && !vy[y])            {                vy[y] = true;                   // 找到擴充路徑                  if (my[y] == -1 || DFS(my[y]))                {                   mx[x] = y; my[y] = x;                   return true;                   }            }        return false;    }       int bipartite_matching()    {        // 全部的點初始化為未匹配點。        memset(mx, -1, sizeof(mx));           memset(my, -1, sizeof(my));           // 依序把X中的每一個點作為擴充路徑的端點,        // 並嘗試尋找擴充路徑。        int c = 0;        for (int x=0; x<nx; ++x)   //     if (mx[x] == -1)    // x為未匹配點,這行可精簡。            {                // 開始Graph Traversal                memset(vy, false, sizeof(vy));                if (DFS(x)) c++;            }        return c;    }   void Floyd(int n)   {           int i,j,k;           for(k=0;k<n;k++)           for(i=0;i<n;i++)           for(j=0;j<n;j++)           {              if(i!=j&&adj[i][k]&&adj[k][j])              adj[i][j]=1;           }       }              main()   {            int i,a,b,n,m;            while(scanf("%d%d",&n,&m),n!=0||m!=0)            {               memset(adj, 0, sizeof(adj));                for(i=0;i<m;i++)               {                scanf("%d%d",&a,&b);                adj[a-1][b-1]=1;               }               Floyd(n);               nx=ny=n;               printf("%d\n",n-bipartite_matching());            }            system("pause");   }        
posted @ 2011-02-12 15:52  CoderZhuang  阅读(139)  评论(0编辑  收藏  举报