BZOJ 1597: [Usaco2008 Mar]土地购买 斜率优化

1597: [Usaco2008 Mar]土地购买

Time Limit: 10 Sec  Memory Limit: 162 MB

Description

农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.

Input

* 第1行: 一个数: N

* 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽

Output

* 第一行: 最小的可行费用.

Sample Input

4
100 1
15 15
20 5
1 100

输入解释:

共有4块土地.

Sample Output

500

HINT

 

题解:

  按照X排序, 手动删掉一些无影响的选择

  剩下的都是 X增大,Y减小的矩阵

  那么答案必须是选择一段连续的矩阵了

  这个时候就可以DP

  他是有单调性的

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
#define LL long long
const int N = 1e5+10, inf = 1e9, mod = 1e9+7;
struct ss{
    LL x,y;
}Q[N],tmp[N];
int cmp1(ss s1,ss s2) {
    if(s1.x == s2.x) return s1.y < s2.y;
    else return s1.x < s2.x;
}
int cmp2(ss s1,ss s2) {
    if(s1.y == s2.y) return s1.x < s2.x;
    else return s1.y < s2.y;
}
int n,q[N];
LL dp[N];
int main() {
    scanf("%d",&n);
    for(int i = 1; i <= n; ++i) {
        scanf("%lld%lld",&Q[i].x,&Q[i].y);
    }
    sort(Q+1,Q+n+1,cmp1);
    int cnt = 0;
    for(int i = 1; i <= n; ++i) {
        while(cnt && tmp[cnt].y<=Q[i].y)cnt--;
        tmp[++cnt] = Q[i];
    }
    n = cnt;
    for(int i = 1; i <= n; ++i) Q[i] = tmp[i],dp[i] = 1e15;
    dp[0] = 0;
    int l = 1,r = 2;q[1] = 0;
    q[2] = 1;dp[1] = 1LL*Q[1].x * Q[1].y;
    for(int i = 2; i <= n; ++i) {
        while(l < r && dp[q[l+1]] - dp[q[l]] < 1LL*(Q[q[l]+1].y - Q[q[l+1]+1].y) * Q[i].x) ++l;
        dp[i] = dp[q[l]] + 1LL*Q[i].x * Q[q[l]+1].y;
        while(l < r && (dp[q[r]]-dp[q[r-1]]) * 1LL*(Q[q[r]+1].y-Q[i+1].y) > (dp[i] - dp[q[r]]) * (Q[q[r-1]+1].y-Q[q[r]+1].y)) --r;
        q[++r] = i;
    }
    printf("%lld\n",dp[n]);
    return 0;
}

 

posted @ 2017-10-07 14:10  meekyan  阅读(422)  评论(0编辑  收藏  举报