FZU 2137 奇异字符串 后缀树组+RMQ
题解:
枚举x位置,向左右延伸计算答案
如何计算答案:对字符串建立SA,那么对于想双延伸的长度L,假如有lcp(i-L,i+1)>=L那么就可以更新答案
复杂度 建立SA,LCP等nlogn,枚举X及向两边延伸26*n
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define ls i<<1 #define rs ls | 1 #define mid ((ll+rr)>>1) #define pii pair<int,int> #define MP make_pair typedef long long LL; const long long INF = 1e18+1LL; const double Pi = acos(-1.0); const int N = 1e5+10, M = 2e5+20, mod = 1e9+7, inf = 2e9; ///heght[i] 表示 Suffix(sa[i-1])和Suffix(sa[i]) 的最长公共前缀: ///rank[i] 表示 开头为i的后缀的等级: ///sa[i] 表示 排名为i的后缀 的开头位置: int *rank,r[N],sa[N],height[N],wa[N],wb[N],wm[N]; bool cmp(int *r,int a,int b,int l) { return r[a] == r[b] && r[a+l] == r[b+l]; } void SA(int *r,int *sa,int n,int m) { int *x=wa,*y=wb,*t; for(int i=0;i<m;++i)wm[i]=0; for(int i=0;i<n;++i)wm[x[i]=r[i]]++; for(int i=1;i<m;++i)wm[i]+=wm[i-1]; for(int i=n-1;i>=0;--i)sa[--wm[x[i]]]=i; for(int i=0,j=1,p=0;p<n;j=j*2,m=p){ for(p=0,i=n-j;i<n;++i)y[p++]=i; for(i=0;i<n;++i)if(sa[i]>=j)y[p++]=sa[i]-j; for(i=0;i<m;++i)wm[i]=0; for(i=0;i<n;++i)wm[x[y[i]]]++; for(i=1;i<m;++i)wm[i]+=wm[i-1]; for(i=n-1;i>=0;--i)sa[--wm[x[y[i]]]]=y[i]; for(t=x,x=y,y=t,i=p=1,x[sa[0]]=0;i<n;++i) { x[sa[i]]=cmp(y,sa[i],sa[i-1],j)?p-1:p++; } } rank=x; } void Height(int *r,int *sa,int n) { for(int i=0,j=0,k=0;i<n;height[rank[i++]]=k) for(k?--k:0,j=sa[rank[i]-1];r[i+k] == r[j+k];++k); } int dp[N][30],n; char a[N]; void Lcp_init() { for(int i = 1; i <= n; ++i) dp[i][0] = height[i]; for(int j = 1; (1<<j) <= n; ++j) { for(int i = 1; i + (1<<j) - 1 <= n; ++i) { dp[i][j] = min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); } } } int lcp(int l,int r) { if(l > r) swap(l,r); l++; int len = r - l + 1; int k = 0; while((1<<(k+1)) <= len) k++; return min(dp[l][k],dp[r - (1<<k) + 1][k]); } int main() { int T; scanf("%d",&T); while(T--) { scanf("%s",a); n = strlen(a); for(int i = 0; i < n; ++i) r[i] = a[i] - 'a' + 1; r[n] = 0; SA(r,sa,n+1,256); Height(r,sa,n); Lcp_init(); LL ans = 0; for(int i = 1; i < n-1; ++i) { int L = 1; while(i - L >= 0 && i + L < n) { if(a[i] == a[i-L] || a[i] == a[i + L]) break; if(lcp(rank[i-L],rank[i+1]) >= L) ans += 1LL * (2*L+1) * (2*L+1); L++; } } printf("%I64d\n",ans); } return 0; }