HDU 4513 吉哥系列故事——完美队形II manacher

吉哥系列故事——完美队形II

 

Problem Description
  吉哥又想出了一个新的完美队形游戏!
  假设有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则就是新的完美队形:

  1、挑出的人保持原队形的相对顺序不变,且必须都是在原队形中连续的;
  2、左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然如果m是奇数,中间那个人可以任意;
  3、从左到中间那个人,身高需保证不下降,如果用H表示新队形的高度,则H[1] <= H[2] <= H[3] .... <= H[mid]。

  现在吉哥想知道:最多能选出多少人组成新的完美队形呢?
 

 

Input
  输入数据第一行包含一个整数T,表示总共有T组测试数据(T <= 20);
  每组数据首先是一个整数n(1 <= n <= 100000),表示原先队形的人数,接下来一行输入n个整数,表示原队形从左到右站的人的身高(50 <= h <= 250,不排除特别矮小和高大的)。
 

 

Output
  请输出能组成完美队形的最多人数,每组输出占一行。
 

 

Sample Input
2 3 51 52 51 4 51 52 52 51
 

 

Sample Output
3 4
 

题解:

  manacher基础算法上加个判定条件:即向两边延伸的大小限制

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 2e6+10, M = 2e2+11, inf = 2e9, mod = 1e9+7;

int p[N],a[N],n;
int manacher(int l)
{
    int mx = 0, id = 0;
    memset(p,0,sizeof(p));
    for(int i=1;i<l;i++)
    {
        if(p[id]+id>i)p[i]=min(p[2*id-i],p[id]+id-i);
        else p[i]=1;
        while(a[i-p[i]] == a[i+p[i]]&&a[i-p[i]] <= a[i-p[i]+2])++p[i];
        if(id+p[id]<i+p[i])id=i;
        if(mx<p[i])mx=p[i];
    }
    return mx-1;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        a[0]=-1;
        for(int i=1;i<=n;i++) {
            a[i*2-1]=0;
            scanf("%d",&a[i*2]);
        }
        a[2*n+1]=0;
        printf("%d\n",manacher(2*n+1));
    }
    return 0;
}

 

posted @ 2016-07-10 10:10  meekyan  阅读(290)  评论(0编辑  收藏  举报