Codeforces Round #340 (Div. 2)E. XOR and Favorite Number 莫队算法
Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Output
Print m lines, answer the queries in the order they appear in the input.
6 2 3
1 2 1 1 0 3
1 6
3 5
7
0
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题意:
给你1~n的数,m次询问,每次问你l,r之间a[x]^a[y]=k的对数有多少
题解:
莫队离线做,
预处理异或前缀和,
每次按照莫队算法解除答案就好了
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> using namespace std; const int maxn = 120010, M = 1e5+10, mod = 1e9 + 7, inf = 0x3f3f3f3f; typedef long long ll; int pos[maxn],col[maxn],f[5000000],n,m,k; ll Ans[maxn]; struct Query{ int l,r,id; friend bool operator < (const Query &R,const Query &T){ return pos[R.l]<pos[T.l] || (pos[R.l]==pos[T.l] && R.r<T.r); } }Q[maxn]; void init(){ scanf("%d%d%d",&n,&m,&k); for(int i=1;i<=n;++i)scanf("%d",&col[i]); for(int i=1;i<=n;i++) col[i]^=col[i-1]; int limit=(int)sqrt((double)n+0.5); for(int i=1;i<=n;++i)pos[i]=(i-1)/limit+1;//左端点分块 for(int i=1;i<=m;++i){ scanf("%d%d",&Q[i].l,&Q[i].r); Q[i].id=i; } sort(Q+1,Q+m+1); } void modify(int p,ll &ans,int add){ if(add>0) { ans=ans+add*f[col[p]^k];f[col[p]]+=add; } else { f[col[p]]+=add;ans=ans+add*f[col[p]^k]; } } void solve(){ ll ans=0; int l=1,r=0; f[0]=1; for(int i=1;i<=m;++i){ int id=Q[i].id; while(r<Q[i].r) modify(++r,ans,1); while(l>Q[i].l) --l,modify(l-1,ans,1); while(r>Q[i].r) modify(r--,ans,-1); while(l<Q[i].l) modify(l-1,ans,-1),l++; Ans[id] = ans; } for(int i=1;i<=m;++i) printf("%I64d\n",Ans[i]); } int main(){ init(); solve(); return 0; }