UVA 10574 - Counting Rectangles 计数
Given n points on the XY plane, count how many regular rectangles are formed. A rectangle is regular if and only if its sides are all parallel to the axis.
Input
The first line contains the number of tests t (1 ≤ t ≤ 10). Each case contains a single line with a
positive integer n (1 ≤ n ≤ 5000), the number of points. There are n lines follow, each line contains 2
integers x, y (≤ x, y ≤ 109
) indicating the coordinates of a point.
Output
For each test case, print the case number and a single integer, the number of regular rectangles found.
Sample Input
2
5
0 0
2 0
0 2
2 2
1 1
3
0 0
0 30
0 900
Sample Output
Case 1: 1
Case 2: 0
题意:给你n个点 ,问你这些点能够组成多少个 长宽和坐标轴平行的 矩形
题解:按照x排序,在y轴平行下,选择不同直线组合,满足两y轴上的点相等就是一种, 对于一堆相等的 我们用组合数就好了
//meek ///#include<bits/stdc++.h> #include <iostream> #include <cstdio> #include <cmath> #include <string> #include <cstring> #include <algorithm> using namespace std ; typedef long long ll; #define mem(a) memset(a,0,sizeof(a)) #define pb push_back #define fi first #define se second #define MP make_pair const int N=5005; const ll INF = 1ll<<61; const int inf = 1<<31; const int mod= 1000000007; const int M = 1000000; struct ss{ int x,y; }a[N],p[N*N]; int cnt; int cmp(ss s1,ss s2) { if(s1.x == s2.x) return s1.y<s2.y; return s1.x<s2.x; } void init() { cnt = 0;mem(p); } ll solve() { ll ans = 0; for(int i = 0;i < cnt; ) { int now = i+1; while(p[i].x == p[now].x && p[i].y == p[now].y) now++; ll c = now - i; if(c>=2) ans += c*(c-1)/2; i = now; } return ans; } int main() { int T,n,x,y,cas = 1; scanf("%d",&T); while(T--) { init(); scanf("%d",&n); for(int i=1;i<=n;i++) { scanf("%d%d",&x,&y); a[i].x = x; a[i].y = y; } sort(a+1,a+n+1,cmp); cnt = 0; for(int i=1;i<=n;i++) { for(int j=i+1;j<=n;j++) { if(a[i].x != a[j].x) { break; } p[cnt].x = a[i].y; p[cnt].y = a[j].y; cnt++; } } printf("Case %d: ",cas++); sort(p,p+cnt,cmp); printf("%lld\n",solve()); } return 0; }