HDU 5475An easy problem 离线set/线段树
An easy problem
Time Limit: 8000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
1. multiply X with a number.
2. divide X with a number which was multiplied before.
After each operation, please output the number X modulo M.
1. multiply X with a number.
2. divide X with a number which was multiplied before.
After each operation, please output the number X modulo M.
Input
The first line is an integer T(1≤T≤10), indicating the number of test cases.
For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. (1≤Q≤105,1≤M≤109)
The next Q lines, each line starts with an integer x indicating the type of operation.
if x is 1, an integer y is given, indicating the number to multiply. (0<y≤109)
if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.)
It's guaranteed that in type 2 operation, there won't be two same n.
For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. (1≤Q≤105,1≤M≤109)
The next Q lines, each line starts with an integer x indicating the type of operation.
if x is 1, an integer y is given, indicating the number to multiply. (0<y≤109)
if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.)
It's guaranteed that in type 2 operation, there won't be two same n.
Output
For each test case, the first line, please output "Case #x:" and x is the id of the test cases starting from 1.
Then Q lines follow, each line please output an answer showed by the calculator.
Then Q lines follow, each line please output an answer showed by the calculator.
Sample Input
1
10 1000000000
1 2
2 1
1 2
1 10
2 3
2 4
1 6
1 7
1 12
2 7
Sample Output
Case #1:
2
1
2
20
10
1
6
42
504
84
Source
题解:考虑到取摸,离线做
或者线段树上搞
///1085422276 #include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<queue> #include<cmath> #include<map> #include<bitset> #include<set> #include<vector> using namespace std ; typedef long long ll; #define mem(a) memset(a,0,sizeof(a)) #define meminf(a) memset(a,127,sizeof(a)); #define TS printf("111111\n"); #define FOR(i,a,b) for( int i=a;i<=b;i++) #define FORJ(i,a,b) for(int i=a;i>=b;i--) #define READ(a,b,c) scanf("%d%d%d",&a,&b,&c) #define mod 1000000007 #define inf 100000 inline ll read() { ll x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-')f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') { x=x*10+ch-'0'; ch=getchar(); } return x*f; } //**************************************** struct ss { int id,x; bool operator < (const ss &A)const { return id < A.id; } }; #define maxn 100000+5 set<ss >s; set<ss >::iterator it; int main() { int oo=1; ll n,q,m,x[maxn],op[maxn],vis[maxn],ans[maxn],A[maxn]; int T=read(); while(T--) { scanf("%I64d%I64d",&n,&m); FOR(i,1,n) { scanf("%I64d%I64d",&op[i],&x[i]); } mem(vis); FOR(i,1,n) { if(op[i]==2)vis[x[i]]=1; } mem(ans); ans[0]=1; FOR(i,1,n) { ans[i]=ans[i-1]; if(op[i]==1&&!vis[i]) { ans[i]=(ans[i]*x[i])%m; } } //cout<<ans[10]<<endl; s.clear(); for(int i=n; i>=1; i--) { ll tmp=1; for(it=s.begin(); it!=s.end(); it++) { if((*it).id>i)break; tmp*=(*it).x; tmp%=m; } A[i]=(ans[i]*tmp)%m; if(op[i]==2) { ss g; g.id=x[i]; g.x=x[x[i]]; s.insert(g); } } printf("Case #%d:\n",oo++); for(int i=1; i<=n; i++) cout<<A[i]<<endl; } return 0; }