摘要:
Hall定理:设二部图中G=<V1,V2,E>中|V1|=m<=|V2|=n,G中存在从V1到V2的完备匹配当且仅当V1中任意k(k=1,2,...,m)个顶点至少与V2中k个顶点相邻(相异性条件)。 证明: (必要性)显然成立。 (充分性)反证法。设G中不存在完备匹配,取G的一个最大匹配M,则V1中至少有一个点不在M上,且该点必至少与一条不在M中的边相连,该边的另一个顶点若也为M-非饱和点,则与M为最大匹配矛盾,若另一个顶点为M-饱和点,则考察在M中与该顶点相邻的点,利用饱和点去考察在M中相邻的饱和点(交错地考察,即交错地通过M中的边和非M中的边),直至考察完毕,由相异性条 阅读全文